TY - GEN
T1 - Optimization of an Angle-Aided Mirror Diversity Receiver for Indoor MIMO-VLC Systems
AU - Park, Kihong
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work of authors was a supported by the KACST Technology Innovation Center (TIC) for Solid State Lighting at KAUST.
PY - 2017/2/7
Y1 - 2017/2/7
N2 - In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.
AB - In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.
UR - http://hdl.handle.net/10754/623883
UR - http://ieeexplore.ieee.org/document/7842104/
UR - http://www.scopus.com/inward/record.url?scp=85015438992&partnerID=8YFLogxK
U2 - 10.1109/glocom.2016.7842104
DO - 10.1109/glocom.2016.7842104
M3 - Conference contribution
SN - 9781509013289
BT - 2016 IEEE Global Communications Conference (GLOBECOM)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -