Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption

Qing Xie, Xiangliang Zhang, Zhixu Li, Xiaofang Zhou

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The problem we aim to address is the optimization of cost management for executing multiple continuous queries on data streams, where each query is defined by several filters, each of which monitors certain status of the data stream. Specially the filter can be shared by different queries and expensive to evaluate. The conventional objective for such a problem is to minimize the overall execution cost to solve all queries, by planning the order of filter evaluation in shared strategy. However, in streaming scenario, the characteristics of data items may change in process, which can bring some uncertainty to the outcome of individual filter evaluation, and affect the plan of query execution as well as the overall execution cost. In our work, considering the influence of the uncertain variation of data characteristics, we propose a framework to deal with the dynamic adjustment of filter ordering for query execution on data stream, and focus on the issues of cost management. By incrementally monitoring and analyzing the results of filter evaluation, our proposed approach can be effectively adaptive to the varied stream behavior and adjust the optimal ordering of filter evaluation, so as to optimize the execution cost. In order to achieve satisfactory performance and efficiency, we also discuss the trade-off between the adaptivity of our framework and the overhead incurred by filter adaption. The experimental results on synthetic and two real data sets (traffic and multimedia) show that our framework can effectively reduce and balance the overall query execution cost and keep high adaptivity in streaming scenario.
Original languageEnglish (US)
Pages (from-to)1258-1271
Number of pages14
JournalIEEE Transactions on Knowledge and Data Engineering
Volume28
Issue number5
DOIs
StatePublished - Jan 12 2016

Fingerprint

Dive into the research topics of 'Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption'. Together they form a unique fingerprint.

Cite this