TY - JOUR
T1 - Organic-Inorganic Hybrid Glasses of Atomically Precise Nanoclusters
AU - Dong, Chunwei
AU - Song, Xin
AU - Hasanov, Bashir E.
AU - Yuan, Youyou
AU - Gutiérrez-Arzaluz, Luis
AU - Yuan, Peng
AU - Nematulloev, Saidkhodzha
AU - Bayindir, Mehmet
AU - Mohammed, Omar F.
AU - Bakr, Osman M.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/3/20
Y1 - 2024/3/20
N2 - Organic-inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure-property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal-liquid-glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics.
AB - Organic-inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure-property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal-liquid-glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses’ physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH−π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of “nanocluster glass” opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics.
UR - http://www.scopus.com/inward/record.url?scp=85186703370&partnerID=8YFLogxK
U2 - 10.1021/jacs.3c12296
DO - 10.1021/jacs.3c12296
M3 - Article
C2 - 38433410
AN - SCOPUS:85186703370
SN - 0002-7863
VL - 146
SP - 7373
EP - 7385
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 11
ER -