Outage probability of diversity systems over generalized fading channels

Young Chai Ko, Mohamed Slim Alouini, Marvin K. Simon

Research output: Contribution to journalArticlepeer-review

172 Scopus citations

Abstract

Outage probability is an important performance measure of communication systems operating over fading channels. Relying on a simple and accurate algorithm for the numerical inversion of the Laplace transforms of cumulative distribution functions, we develop a moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions. The method is then extended to coherent EGC but only for the case of Nakagami-m fading channels. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the power delay profile and the fading correlation on the outage probability of MRC and EGC systems.

Original languageEnglish (US)
Pages (from-to)1783-1787
Number of pages5
JournalIEEE Transactions on Communications
Volume48
Issue number11
DOIs
StatePublished - Nov 2000
Externally publishedYes

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Outage probability of diversity systems over generalized fading channels'. Together they form a unique fingerprint.

Cite this