Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects

Chen Xie*, Thomas Heumüller, Wolfgang Gruber, Xiaofeng Tang, Andrej Classen, Isabel Schuldes, Matthew Bidwell, Andreas Späth, Rainer H. Fink, Tobias Unruh, Iain McCulloch, Ning Li, Christoph J. Brabec

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

99 Scopus citations

Abstract

There is a strong market driven need for processing organic photovoltaics from eco-friendly solvents. Water-dispersed organic semiconducting nanoparticles (NPs) satisfy these premises convincingly. However, the necessity of surfactants, which are inevitable for stabilizing NPs, is a major obstacle towards realizing competitive power conversion efficiencies for water-processed devices. Here, we report on a concept for minimizing the adverse impact of surfactants on solar cell performance. A poloxamer facilitates the purification of organic semiconducting NPs through stripping excess surfactants from aqueous dispersion. The use of surfactant-stripped NPs based on poly(3-hexylthiophene) / non-fullerene acceptor leads to a device efficiency and stability comparable to the one from devices processed by halogenated solvents. A record efficiency of 7.5% is achieved for NP devices based on a low-band gap polymer system. This elegant approach opens an avenue that future organic photovoltaics processing may be indeed based on non-toxic water-based nanoparticle inks.

Original languageEnglish (US)
Article number5335
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects'. Together they form a unique fingerprint.

Cite this