TY - GEN
T1 - Parallel Sum Primal Spaces for Isogeometric Deluxe BDDC Preconditioners
AU - da Veiga, L. Beirão
AU - Pavarino, L. F.
AU - Scacchi, S.
AU - Widlund, O. B.
AU - Zampini, Stefano
N1 - KAUST Repository Item: Exported on 2020-04-23
Acknowledgements: For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. The Authors would like to thank L. Dalcin for the 3D NURBS geometry.
PY - 2017/3/18
Y1 - 2017/3/18
N2 - In this paper, we study the adaptive selection of primal constraints in BDDC deluxe preconditioners applied to isogeometric discretizations of scalar elliptic problems. The main objective of this work is to significantly reduce the coarse space dimensions of the BDDC isogeometric preconditioners developed in our previous works, Beirão da Veiga et al. (Math Mod Meth Appl Sci 23, 1099-1142, 2013a) and Beirão da Veiga et al. (SIAM J Sci Comp 36, A1118-A1139, 2014b), while retaining their fast and scalable convergence rates.
AB - In this paper, we study the adaptive selection of primal constraints in BDDC deluxe preconditioners applied to isogeometric discretizations of scalar elliptic problems. The main objective of this work is to significantly reduce the coarse space dimensions of the BDDC isogeometric preconditioners developed in our previous works, Beirão da Veiga et al. (Math Mod Meth Appl Sci 23, 1099-1142, 2013a) and Beirão da Veiga et al. (SIAM J Sci Comp 36, A1118-A1139, 2014b), while retaining their fast and scalable convergence rates.
UR - http://hdl.handle.net/10754/656514
UR - http://link.springer.com/10.1007/978-3-319-52389-7_2
UR - http://www.scopus.com/inward/record.url?scp=85016207419&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-52389-7_2
DO - 10.1007/978-3-319-52389-7_2
M3 - Conference contribution
AN - SCOPUS:85016207419
SN - 9783319523880
SP - 17
EP - 29
BT - Lecture Notes in Computational Science and Engineering
PB - Springer International Publishing
ER -