Parameter-Free Online Convex Optimization with Sub-Exponential Noise

Kwang Sung Jun, Francesco Orabona

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Citations (SciVal)


We consider the problem of unconstrained online convex optimization (OCO) with sub-exponential noise, a strictly more general problem than the standard OCO. In this setting, the learner receives a subgradient of the loss functions corrupted by sub-exponential noise and strives to achieve optimal regret guarantee, without knowledge of the competitor norm, i.e., in a parameter-free way. Recently, Cutkosky and Boahen (COLT 2017) proved that, given unbounded subgradients, it is impossible to guarantee a sublinear regret due to an exponential penalty. This paper shows that it is possible to go around the lower bound by allowing the observed subgradients to be unbounded via stochastic noise. However, the presence of unbounded noise in unconstrained OCO is challenging; existing algorithms do not provide near-optimal regret bounds or fail to have a guarantee. So, we design a novel parameter-free OCO algorithm for Banach space, which we call BANCO, via a reduction to betting on noisy coins. We show that BANCO achieves the optimal regret rate in our problem. Finally, we show the application of our results to obtain a parameter-free locally private stochastic subgradient descent algorithm, and the connection to the law of iterated logarithms.
Original languageEnglish (US)
Title of host publicationProceedings of Machine Learning Research
PublisherML Research Press
Number of pages22
StatePublished - Jan 1 2019
Externally publishedYes


Dive into the research topics of 'Parameter-Free Online Convex Optimization with Sub-Exponential Noise'. Together they form a unique fingerprint.

Cite this