TY - GEN
T1 - PEDRo: an Event-based Dataset for Person Detection in Robotics
AU - Boretti, Chiara
AU - Bich, Philippe
AU - Pareschi, Fabio
AU - Prono, Luciano
AU - Rovatti, Riccardo
AU - Setti, Gianluca
N1 - KAUST Repository Item: Exported on 2023-08-21
PY - 2023/6
Y1 - 2023/6
N2 - Event-based cameras are devices based on neuromorphic sensors that are gaining popularity in different fields, including robotics. They are suitable for tasks where high-speed, low-latency, low-power operations are required. Person detection is one of these, to allow mobile robots to monitor areas and navigate in crowded environments. Most of the available event-based datasets that contain annotated human figures and collected with a moving camera are designed for autonomous driving tasks. Yet, robotic tasks are certainly not limited to the recognition of pedestrians walking on sidewalks, which makes the above datasets of limited utility. To address this impasse, we introduce a new dataset called PEDRo, which is fully manually labeled. This dataset has been specifically developed for person detection and it counts a total number of 43259 bounding boxes included in 119 recordings. A moving DAVIS346 event-based camera has been used to collect events in a large variety of indoor and outdoor scenarios with various lighting and meteorological conditions (such as sunny, rainy and snowy). To the best of our knowledge, this is now the largest available dataset for event-based person detection, which has been recorded with a moving camera and manually labeled.
AB - Event-based cameras are devices based on neuromorphic sensors that are gaining popularity in different fields, including robotics. They are suitable for tasks where high-speed, low-latency, low-power operations are required. Person detection is one of these, to allow mobile robots to monitor areas and navigate in crowded environments. Most of the available event-based datasets that contain annotated human figures and collected with a moving camera are designed for autonomous driving tasks. Yet, robotic tasks are certainly not limited to the recognition of pedestrians walking on sidewalks, which makes the above datasets of limited utility. To address this impasse, we introduce a new dataset called PEDRo, which is fully manually labeled. This dataset has been specifically developed for person detection and it counts a total number of 43259 bounding boxes included in 119 recordings. A moving DAVIS346 event-based camera has been used to collect events in a large variety of indoor and outdoor scenarios with various lighting and meteorological conditions (such as sunny, rainy and snowy). To the best of our knowledge, this is now the largest available dataset for event-based person detection, which has been recorded with a moving camera and manually labeled.
UR - http://hdl.handle.net/10754/693640
UR - https://ieeexplore.ieee.org/document/10208992/
U2 - 10.1109/cvprw59228.2023.00426
DO - 10.1109/cvprw59228.2023.00426
M3 - Conference contribution
BT - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
PB - IEEE
ER -