TY - JOUR
T1 - PEM fuel cell stack model development for real-time simulation applications
AU - Jung, Jee Hoon
AU - Ahmed, Shehab
AU - Enjeti, Prasad
N1 - Generated from Scopus record by KAUST IRTS on 2019-11-27
PY - 2011/9/1
Y1 - 2011/9/1
N2 - The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools, has allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting the computation speeds for a fuel cell terminal model on a real-time simulator which can be used in a power hardware-in-the-loop application. An elaborate simulation model of the fuel cell stack system has been developed, and a significant improvement in the computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-LAB MATLAB/Simulink-based real-time engineering simulator is verified using the experimental results with a Ballard Nexa fuel cell stack system. © 2010 IEEE.
AB - The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools, has allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting the computation speeds for a fuel cell terminal model on a real-time simulator which can be used in a power hardware-in-the-loop application. An elaborate simulation model of the fuel cell stack system has been developed, and a significant improvement in the computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-LAB MATLAB/Simulink-based real-time engineering simulator is verified using the experimental results with a Ballard Nexa fuel cell stack system. © 2010 IEEE.
UR - http://ieeexplore.ieee.org/document/5661837/
UR - http://www.scopus.com/inward/record.url?scp=80051708653&partnerID=8YFLogxK
U2 - 10.1109/TIE.2010.2098365
DO - 10.1109/TIE.2010.2098365
M3 - Article
SN - 0278-0046
VL - 58
JO - IEEE Transactions on Industrial Electronics
JF - IEEE Transactions on Industrial Electronics
IS - 9
ER -