TY - GEN
T1 - Performance analysis of RAKE receivers with finger reassignment
AU - Choi, Seyeong
AU - Alouini, Mohamed Slim
AU - Qaraqe, Khalid A.
AU - Yang, Hong Chuan
PY - 2006
Y1 - 2006
N2 - We propose and analyze in this paper a new finger assignment technique that is applicable for RAKE receivers when they operate in the soft handover (SHO) region. This scheme employs a new version of generalized selection combining (GSC). More specifically, in the SHO region, the receiver uses by default only the strongest paths from the serving base station (BS) and only when the combined signal-to-noise ratio (SNR) falls below a certain pre-determined threshold, the receiver uses more resolvable paths from the target BS to improve the performance. Hence, relying on some recent results on order statistics we attack the statistics of two correlated GSC stages and provide the closed-form expressions for the statistics of the output SNR. By investigating the tradeoff among the error performance, the path estimation load, and the SHO overhead, we show through numerical examples that the new scheme offers commensurate performance in comparison with more complicated GSC-based diversity systems while requiring a smaller estimation load and SHO overhead.
AB - We propose and analyze in this paper a new finger assignment technique that is applicable for RAKE receivers when they operate in the soft handover (SHO) region. This scheme employs a new version of generalized selection combining (GSC). More specifically, in the SHO region, the receiver uses by default only the strongest paths from the serving base station (BS) and only when the combined signal-to-noise ratio (SNR) falls below a certain pre-determined threshold, the receiver uses more resolvable paths from the target BS to improve the performance. Hence, relying on some recent results on order statistics we attack the statistics of two correlated GSC stages and provide the closed-form expressions for the statistics of the output SNR. By investigating the tradeoff among the error performance, the path estimation load, and the SHO overhead, we show through numerical examples that the new scheme offers commensurate performance in comparison with more complicated GSC-based diversity systems while requiring a smaller estimation load and SHO overhead.
UR - http://www.scopus.com/inward/record.url?scp=46949083067&partnerID=8YFLogxK
U2 - 10.1109/ICCS.2006.301492
DO - 10.1109/ICCS.2006.301492
M3 - Conference contribution
AN - SCOPUS:46949083067
SN - 1424404118
SN - 9781424404117
T3 - 2006 IEEE Singapore International Conference on Communication Systems, ICCS 2006
BT - 2006 IEEE Singapore International Conference on Communication Systems, ICCS 2006
T2 - 10th IEEE Singapore International Conference on Communications Systems, ICCS 2006
Y2 - 30 October 2006 through 1 November 2006
ER -