Abstract
We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory's accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver's dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.
Original language | English (US) |
---|---|
Journal | Physical Review B |
Volume | 83 |
Issue number | 20 |
DOIs | |
State | Published - May 25 2011 |
Externally published | Yes |