TY - GEN
T1 - Perturbed learning automata in potential games
AU - Chasparis, Georgios C.
AU - Shamma, Jeff S.
AU - Rantzer, Anders
PY - 2011
Y1 - 2011
N2 - This paper presents a reinforcement learning algorithm and provides conditions for global convergence to Nash equilibria. For several reinforcement learning schemes, including the ones proposed here, excluding convergence to action profiles which are not Nash equilibria may not be trivial, unless the step-size sequence is appropriately tailored to the specifics of the game. In this paper, we sidestep these issues by introducing a new class of reinforcement learning schemes where the strategy of each agent is perturbed by a state-dependent perturbation function. Contrary to prior work on equilibrium selection in games, where perturbation functions are globally state dependent, the perturbation function here is assumed to be local, i.e., it only depends on the strategy of each agent. We provide conditions under which the strategies of the agents will converge to an arbitrarily small neighborhood of the set of Nash equilibria almost surely. We further specialize the results to a class of potential games.
AB - This paper presents a reinforcement learning algorithm and provides conditions for global convergence to Nash equilibria. For several reinforcement learning schemes, including the ones proposed here, excluding convergence to action profiles which are not Nash equilibria may not be trivial, unless the step-size sequence is appropriately tailored to the specifics of the game. In this paper, we sidestep these issues by introducing a new class of reinforcement learning schemes where the strategy of each agent is perturbed by a state-dependent perturbation function. Contrary to prior work on equilibrium selection in games, where perturbation functions are globally state dependent, the perturbation function here is assumed to be local, i.e., it only depends on the strategy of each agent. We provide conditions under which the strategies of the agents will converge to an arbitrarily small neighborhood of the set of Nash equilibria almost surely. We further specialize the results to a class of potential games.
UR - http://www.scopus.com/inward/record.url?scp=84860653554&partnerID=8YFLogxK
U2 - 10.1109/CDC.2011.6161294
DO - 10.1109/CDC.2011.6161294
M3 - Conference contribution
AN - SCOPUS:84860653554
SN - 9781612848006
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 2453
EP - 2458
BT - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Y2 - 12 December 2011 through 15 December 2011
ER -