PEST sequences from a cactus dehydrin regulate its proteolytic degradation

Adriana L. Salazar-Retana, Israel Maruri-López*, Itzell E. Hernández-Sánchez, Alicia Becerra-Flora, María de la Luz Guerrero-González, Juan Francisco Jiménez-Bremont

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Dehydrins (DHNs) are intrinsically disordered proteins expressed under cellular dehydration-related stresses. In this study, we identified potential proteolytic PEST sequences located at the central and C-terminal regions from the Opuntia streptacantha OpsDHN1 protein. In order to evaluate these PEST sequences as proteolytic tags, we generated a translational fusion with the GUS reporter protein and OpsDHN1 coding sequence. We found a GUS degradation effect in tobacco agro-infiltrated leaves and Arabidopsis transgenic lines that expressed the fusion GUS::OpsDHN1 full-length. Also, two additional translational fusions between OpsDHN1 protein fragments that include the central (GUS::PEST-1) or the C-terminal (GUS::PEST-2) PEST sequences were able to decrease the GUS activity, with PEST-2 showing the greatest reduction in GUS activity. GUS signal was abated when the OpsDHN1 fragment that includes both PEST sequences (GUS::PEST-1-2) were fused to GUS. Treatment with the MG132 proteasome inhibitor attenuated the PEST-mediated GUS degradation. Point mutations of phosphorylatable residues in PEST sequences reestablished GUS signal, hence these sequences are important during protein degradation. Finally, in silico analysis identified potential PEST sequences in other plant DHNs. This is the first study reporting presence of PEST motifs in dehydrins.

Original languageEnglish (US)
Article numbere6810
JournalPEERJ
Volume2019
Issue number5
DOIs
StatePublished - 2019

Keywords

  • Dehydrin
  • Intrinsically disordered proteins
  • Pest sequences
  • Protein degradation

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'PEST sequences from a cactus dehydrin regulate its proteolytic degradation'. Together they form a unique fingerprint.

Cite this