TY - JOUR
T1 - pH-responsive nano-structured membranes prepared from oppositely charged block copolymer nanoparticles and iron oxide nanoparticles
AU - Farooq, Ujala
AU - Upadhyaya, Lakshmeesha
AU - Shakeel, Ahmad
AU - Martinez, Gema
AU - Semsarilar, Mona
N1 - KAUST Repository Item: Exported on 2021-07-13
Acknowledgements: U. F. acknowledges the financial support from EM3E Master Programme, which is an Educational Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and an extensive international network of industrial companies, research centers and universities. The authors would like to thank Dr. Reyes Mallada for the fruitful discussions and for the help in preparing this manuscript.
PY - 2020
Y1 - 2020
N2 - Nanostructured (hybrid) membranes combining properties of inorganic and polymeric materials is an integral part of the field of separation technology. Mixed matrix membranes were prepared from oppositely charged inorganic (INPs) and polymeric (PNPs) nanoparticles using spin coating method. Four different types of PNPs were prepared. Poly(2-dimethylaminoethyl methacrylate)-b-(methyl methacrylate)) and poly((methacrylic acid)-b-(methyl methacrylate)) diblock copolymers were prepared via RAFT dispersion polymerization in ethanol at 70 °C. Quaternized poly(2-(dimethylamino) ethyl methacrylate)-b-poly (benzyl methacrylate) and poly(potassium 3-sulfopropyl methacrylate)-b-poly (benzyl methacrylate) block copolymers were prepared using aqueous RAFT emulsion polymerization method at 70 °C. The inorganic iron oxide nanoparticles (INPs) were either coated with [3-(2-Aminoethylamino)propyl] trimethoxysilane (TPED) via Dimercaptosuccinic acid (DMSA) using stab exchange. Transmission electron microscopy (TEM) and Dynamic light scattering (DLS) analysis were performed to examine the size and morphology of the prepared polymeric and inorganic nanoparticles. Scanning electron microscope (SEM) and Atomic Force Microscope (AFM) images were obtained to analyze the topography and thin film formation on the nylon support. Detailed filtration experiments were carried out to evaluate the effect of pH on the performance of the membrane.
AB - Nanostructured (hybrid) membranes combining properties of inorganic and polymeric materials is an integral part of the field of separation technology. Mixed matrix membranes were prepared from oppositely charged inorganic (INPs) and polymeric (PNPs) nanoparticles using spin coating method. Four different types of PNPs were prepared. Poly(2-dimethylaminoethyl methacrylate)-b-(methyl methacrylate)) and poly((methacrylic acid)-b-(methyl methacrylate)) diblock copolymers were prepared via RAFT dispersion polymerization in ethanol at 70 °C. Quaternized poly(2-(dimethylamino) ethyl methacrylate)-b-poly (benzyl methacrylate) and poly(potassium 3-sulfopropyl methacrylate)-b-poly (benzyl methacrylate) block copolymers were prepared using aqueous RAFT emulsion polymerization method at 70 °C. The inorganic iron oxide nanoparticles (INPs) were either coated with [3-(2-Aminoethylamino)propyl] trimethoxysilane (TPED) via Dimercaptosuccinic acid (DMSA) using stab exchange. Transmission electron microscopy (TEM) and Dynamic light scattering (DLS) analysis were performed to examine the size and morphology of the prepared polymeric and inorganic nanoparticles. Scanning electron microscope (SEM) and Atomic Force Microscope (AFM) images were obtained to analyze the topography and thin film formation on the nylon support. Detailed filtration experiments were carried out to evaluate the effect of pH on the performance of the membrane.
UR - http://hdl.handle.net/10754/670154
UR - https://linkinghub.elsevier.com/retrieve/pii/S0376738820307596
UR - http://www.scopus.com/inward/record.url?scp=85086723059&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2020.118181
DO - 10.1016/j.memsci.2020.118181
M3 - Article
SN - 1873-3123
VL - 611
SP - 118181
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -