TY - JOUR
T1 - Phenomenological modeling for FOPEN SAR: Tree-trunk scattering on flat terrain and with concealed targets
AU - Sullivan, Anders
AU - He, Jiangqi
AU - Geng, Norbert
AU - Carin, Lawrence
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-09
PY - 1999/1/1
Y1 - 1999/1/1
N2 - A method of moments (MoM) analysis is developed for electromagnetic scattering from a dielectric body of revolution (BoR) embedded in a layered medium (the half-space problem constituting a special case). The layered-medium parameters can be lossy and dispersive, of interest for simulating the ground. To make such an analysis tractable for wideband applications, we have employed the method of complex images to evaluate the Sommerfeld integrals characteristic of the dyadic layered-medium Green's function. Scattering results from tree trunks are presented, where tree trunks are well represented as BoRs sitting atop a dielectric half-space. In addition, we use our rigorous MoM algorithm to examine scattering from multiple bodies. In this second study, the MoM matrix equations are derived for a BoR and two flat plate conducting targets. To simplify the analysis, the targets are situated in free space. An electric field integral equation (EFIE) formulation is employed in which the submatrices of the MoM matrix are uncoupled, and the current on each body is solved directly. The currents on each body are then recalculated within an outer iterative loop. This iterative solution procedure is shown to preserve the simplicity and attractiveness of an isolated BoR.
AB - A method of moments (MoM) analysis is developed for electromagnetic scattering from a dielectric body of revolution (BoR) embedded in a layered medium (the half-space problem constituting a special case). The layered-medium parameters can be lossy and dispersive, of interest for simulating the ground. To make such an analysis tractable for wideband applications, we have employed the method of complex images to evaluate the Sommerfeld integrals characteristic of the dyadic layered-medium Green's function. Scattering results from tree trunks are presented, where tree trunks are well represented as BoRs sitting atop a dielectric half-space. In addition, we use our rigorous MoM algorithm to examine scattering from multiple bodies. In this second study, the MoM matrix equations are derived for a BoR and two flat plate conducting targets. To simplify the analysis, the targets are situated in free space. An electric field integral equation (EFIE) formulation is employed in which the submatrices of the MoM matrix are uncoupled, and the current on each body is solved directly. The currents on each body are then recalculated within an outer iterative loop. This iterative solution procedure is shown to preserve the simplicity and attractiveness of an isolated BoR.
UR - http://www.scopus.com/inward/record.url?scp=0032685686&partnerID=8YFLogxK
M3 - Article
SN - 0277-786X
VL - 3721
SP - 224
EP - 234
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
ER -