TY - JOUR
T1 - Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance
AU - Ali, Nisar
AU - Said, Amir
AU - Ali, Farman
AU - Raziq, Fazal
AU - Ali, Zarshad
AU - Bilal, Muhammad
AU - Reinert, Laurence
AU - Begum, Tasleem
AU - Iqbal, Hafiz M.N.
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Highly efficient and effective treatments of hazardous dye-based color effluents are a major problem in the industrial sector. In this research, the cobalt ferrite (CoFe2O4) catalyst was produced and used for the degradation of Congo red (CR) as a model dye from aqueous solution. For a said purpose, cobalt ferrite (CoFe2O4) nanostructures with photocatalytic degradation potential were engineered via co-precipitation method using Fe2(SO4)3, CoO2, and triethylene glycol (as a stabilizing agent). As prepared, CoFe2O4 nanostructures were further surface-functionalized with 3-APTES and tested for CR degradation. The prepared CoFe2O4 nanostructures were characterized by X-ray diffraction, Fourier transform infra-red (FT-IR), scanning electron microscopy (SEM), and Brunauer-Emmitt-Teller (BET) analysis. UV-visible absorption was used to measure the optical band gap of prepared CoFe2O4 nanostructures through Tauc plots. The as-prepared CoFe2O4 nanostructure bandgap was found to be 2.71 EV while using an acidic medium. The degradation rates of CR dye for bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4 nanostructures at pH 9 were 84, 87, and 92%, respectively. Furthermore, the influences of various process parameters, i.e., the effect of catalyst dose, contact time, dye dose/concentration, pH effect, and effect of different acids, were checked for the prepared three types of nanostructures, i.e., bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4. The kinetics models properly explained that the reaction of degradation following pseudo-first-order kinetics.
AB - Highly efficient and effective treatments of hazardous dye-based color effluents are a major problem in the industrial sector. In this research, the cobalt ferrite (CoFe2O4) catalyst was produced and used for the degradation of Congo red (CR) as a model dye from aqueous solution. For a said purpose, cobalt ferrite (CoFe2O4) nanostructures with photocatalytic degradation potential were engineered via co-precipitation method using Fe2(SO4)3, CoO2, and triethylene glycol (as a stabilizing agent). As prepared, CoFe2O4 nanostructures were further surface-functionalized with 3-APTES and tested for CR degradation. The prepared CoFe2O4 nanostructures were characterized by X-ray diffraction, Fourier transform infra-red (FT-IR), scanning electron microscopy (SEM), and Brunauer-Emmitt-Teller (BET) analysis. UV-visible absorption was used to measure the optical band gap of prepared CoFe2O4 nanostructures through Tauc plots. The as-prepared CoFe2O4 nanostructure bandgap was found to be 2.71 EV while using an acidic medium. The degradation rates of CR dye for bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4 nanostructures at pH 9 were 84, 87, and 92%, respectively. Furthermore, the influences of various process parameters, i.e., the effect of catalyst dose, contact time, dye dose/concentration, pH effect, and effect of different acids, were checked for the prepared three types of nanostructures, i.e., bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4. The kinetics models properly explained that the reaction of degradation following pseudo-first-order kinetics.
UR - http://link.springer.com/10.1007/s11270-020-4410-8
UR - http://www.scopus.com/inward/record.url?scp=85078134063&partnerID=8YFLogxK
U2 - 10.1007/s11270-020-4410-8
DO - 10.1007/s11270-020-4410-8
M3 - Article
SN - 1573-2932
VL - 231
JO - Water, Air, and Soil Pollution
JF - Water, Air, and Soil Pollution
IS - 2
ER -