Photostriction of CH3NH3PbBr3 Perovskite Crystals

Tzu-Chiao Wei, Hsin-Ping Wang, Ting-You Li, Chun-Ho Lin, Ying-Hui Hsieh, Ying-Hao Chu, Jr-Hau He

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.
Original languageEnglish (US)
Pages (from-to)1701789
JournalAdvanced Materials
Volume29
Issue number35
DOIs
StatePublished - Jul 17 2017

Fingerprint

Dive into the research topics of 'Photostriction of CH3NH3PbBr3 Perovskite Crystals'. Together they form a unique fingerprint.

Cite this