TY - JOUR
T1 - Physical Sensors Based on Laser-Induced Graphene: A Review
AU - Kaidarova, Altynay
AU - Kosel, Jürgen
N1 - KAUST Repository Item: Exported on 2020-11-03
PY - 2020
Y1 - 2020
N2 - Physical sensors form the fundamental building blocks of a multitude of advanced applications that detect and monitor the surroundings and communicate the acquired physical data. The everlasting need for more compliant, low-cost, and energy-efficient sensor solutions has led to considerable interest in enhancing their features and operation limits even further. While graphene has emerged as a promising candidate material, due to its outstanding electrical and mechanical properties, it is still not available in large volumes for practical applications. Meanwhile, Laser-Induced Graphene has opened new perspectives for a versatile, durable, printed physical sensing platform capable of detecting various physical parameters across a range of conditions and subjects. In this review, LIG physical sensors were categorized into four broad types based on their transduction mechanism: mechanical, thermal, magnetic, and electromagnetic. We summaries various design strategies established for preparing reliable physical sensors without the involvement of chemical treatments, synthesis, and multi-step fabrication processes. The review considers the effects of laser choice, lasing environment, and parameters on graphene properties. We also discuss a broad spectrum of applications of LIG physical sensors in fields ranging from healthcare, tactile sensing, environmental monitoring, energy harvesting, and soft robotics to desalination and THz modulation.
AB - Physical sensors form the fundamental building blocks of a multitude of advanced applications that detect and monitor the surroundings and communicate the acquired physical data. The everlasting need for more compliant, low-cost, and energy-efficient sensor solutions has led to considerable interest in enhancing their features and operation limits even further. While graphene has emerged as a promising candidate material, due to its outstanding electrical and mechanical properties, it is still not available in large volumes for practical applications. Meanwhile, Laser-Induced Graphene has opened new perspectives for a versatile, durable, printed physical sensing platform capable of detecting various physical parameters across a range of conditions and subjects. In this review, LIG physical sensors were categorized into four broad types based on their transduction mechanism: mechanical, thermal, magnetic, and electromagnetic. We summaries various design strategies established for preparing reliable physical sensors without the involvement of chemical treatments, synthesis, and multi-step fabrication processes. The review considers the effects of laser choice, lasing environment, and parameters on graphene properties. We also discuss a broad spectrum of applications of LIG physical sensors in fields ranging from healthcare, tactile sensing, environmental monitoring, energy harvesting, and soft robotics to desalination and THz modulation.
UR - http://hdl.handle.net/10754/665746
UR - https://ieeexplore.ieee.org/document/9244124/
U2 - 10.1109/JSEN.2020.3034845
DO - 10.1109/JSEN.2020.3034845
M3 - Article
SN - 2379-9153
SP - 1
EP - 1
JO - IEEE Sensors Journal
JF - IEEE Sensors Journal
ER -