Pillar[3]trianglamines: deeper cavity triangular macrocycles for selective hexene isomer separation†

Yanjun Ding, Lukman O. Alimi, Jing Du, Bin Hua, Avishek Dey, Pei Yu, Niveen M. Khashab*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The separation of α-olefins and their corresponding isomers continues to be a big challenge for the chemical industry due to their overlapping physical properties and low relative volatility. Herein, pillar[3]trianglamine (P-TA) macrocycles were synthesized for the molecular-sieving-like separation of 1-hexene (1-He) selectively over its positional isomer trans-3-hexene (trans-3-He) in the vapor and liquid state. This allyl-functionalized macrocycle features a deeper cavity compared to the previously reported trianglamine host molecules. Solid-vapor sorption experiments verified the successful separation of 1-He from an equimolar mixture of 1-He and trans-3-He. Single-crystal structures and powder X-ray diffraction patterns suggest that this selective adsorption arises from the formation of a thermodynamically stable host-guest complex between 1-He and P-TA. A reversible transformation between the nonporous guest-free structure and the guest-containing structure shows that 1-He separation can be carried out over multiple cycles without any loss of performance. Significantly, P-TA can separate 1-He directly from a liquid isomeric mixture and thus P-TA modified silica sieves (SBA-15) showed the ability to selectively separate 1-He when utilized as a stationary phase in column chromatography. This capitalizes on the prospects of employing macrocyclic hosts as molecular recognition units in real-life separations for sustainable and energy-efficient industrial practices.

Original languageEnglish (US)
Pages (from-to)3244-3248
Number of pages5
JournalChemical Science
Volume13
Issue number11
DOIs
StatePublished - Mar 2 2022

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Pillar[3]trianglamines: deeper cavity triangular macrocycles for selective hexene isomer separation†'. Together they form a unique fingerprint.

Cite this