TY - CHAP
T1 - Planning with Reachable Distances
AU - Tang, Xinyu
AU - Thomas, Shawna
AU - Amato, Nancy M.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: The work of X. Tang was done when he was a Ph.D. student in the Department of Computer Science and Engineering at Texas A&M University. This research supported in part by NSF Grants EIA-0103742, ACR-0113971, CCR-0113974, ACI-0326350, CRI-0551685, CCF-0833199, CCF-0830753, by Chevron, IBM, Intel, HP, and by King Abdullah University of Science and Technology (KAUST) Award KUS-C1-016-04. Thomas supported in part by an NSF Graduate Research Fellowship, a PEO Scholarship, a Department of Education Graduate Fellowship (GAANN), and an IBM TJ Watson PhD Fellowship.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2009
Y1 - 2009
N2 - Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot's degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the robot's number of degrees of freedom. In addition to supporting efficient sampling, we show that the RD-space formulation naturally supports planning, and in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1000 links in time comparable to open chain sampling, and we can generate samples for 1000-link multi-loop systems of varying topology in less than a second. © 2009 Springer-Verlag.
AB - Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot's degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the robot's number of degrees of freedom. In addition to supporting efficient sampling, we show that the RD-space formulation naturally supports planning, and in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1000 links in time comparable to open chain sampling, and we can generate samples for 1000-link multi-loop systems of varying topology in less than a second. © 2009 Springer-Verlag.
UR - http://hdl.handle.net/10754/599200
UR - http://link.springer.com/10.1007/978-3-642-00312-7_32
UR - http://www.scopus.com/inward/record.url?scp=77949867987&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-00312-7_32
DO - 10.1007/978-3-642-00312-7_32
M3 - Chapter
SN - 9783642003110
SP - 517
EP - 531
BT - Algorithmic Foundation of Robotics VIII
PB - Springer Nature
ER -