TY - JOUR
T1 - Plant Science's Next Top Models.
AU - Cesarino, Igor
AU - Ioio, Raffaele Dello
AU - Kirschner, Gwendolyn K
AU - Ogden, Michael S
AU - Picard, Kelsey L
AU - Rast-Somssich, Madlen I
AU - Somssich, Marc
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank Staffan Persson, James L. Weller and John L. Bowman for comments on the manuscript, as well as Tom Dierschke and Boubacar Kountche for providing photographs of M. polymorpha and S. hermontica, respectively.
PY - 2020/4/10
Y1 - 2020/4/10
N2 - Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we would like to introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
AB - Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we would like to introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
UR - http://hdl.handle.net/10754/662828
UR - https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaa063/5818476
U2 - 10.1093/aob/mcaa063
DO - 10.1093/aob/mcaa063
M3 - Article
C2 - 32271862
SN - 0305-7364
JO - Annals of botany
JF - Annals of botany
ER -