Abstract
Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO2 photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core-shell nanoparticles (Au@SiO 2 NPs) and hollow silica nanoparticles with the same shell size of the core-shell nanoparticles. The Au nanoparticles were shelled by a thin SiO2 layer to produce the core-shell structure, and the SiO 2 hollow spheres were made by dissolving the Au cores of the gold/silica core-shell nanoparticles. Therefore, the size and morphology of the SiO2 hollow spheres were the same as the Au@SiO2 NPs. The energy conversion efficiency was improved nearly 36% upon incorporating the Au nanoparticles, mostly due to the increase in Jsc, while V oc and FF were unchanged. The improvement was mostly contributed by the LSPR of the Au@SiO2 NPs, whereas the other parameters, such as the electron lifetime and electron diffusion coefficient, were nearly unchanged. Therefore, LSPR is an effective tool in improving the photocurrent and consequently the performance of DSCs.
Original language | English (US) |
---|---|
Pages (from-to) | 12627-12634 |
Number of pages | 8 |
Journal | JOURNAL OF MATERIALS CHEMISTRY A |
Volume | 1 |
Issue number | 40 |
DOIs | |
State | Published - Oct 28 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science