TY - JOUR
T1 - Plasticization-Resistant Carboxyl-Functionalized 6FDA-Polyimide of Intrinsic Microporosity (PIM-PI) for Membrane-Based Gas Separation
AU - Abdulhamid, Mahmoud A.
AU - Genduso, Giuseppe
AU - Wang, Yingge
AU - Ma, Xiaohua
AU - Pinnau, Ingo
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by baseline funding (No. BAS/1/ 1323-01-01) from King Abdullah University of Science and Technology (KAUST). I.P. wishes to thank Professor Don Paul for teaching him the essentials of polymer science and many stimulating discussions.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - A novel trimethyl-substituted carboxyl-containing polyimide was synthesized via a one-pot high-temperature polycondensation reaction of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,5-diamino-2,4,6-trimethylbenzoic acid (TrMCA). The polyimide (6FDA-TrMCA) displayed a Brunauer-Emmett-Teller surface area of 260 m2 g-1, demonstrating intrinsic microporosity, in contrast to the related low-free volume COOH-functionalized polyimide 6FDA-DABA. Compared to the nonfunctionalized 6FDA polyimide analogue made from 2,4,6-trimethyl-m-phenylenediamine (TrMPD)-also known as 6FDA-DAM-carboxyl functionalization in 6FDA-TrMCA resulted in reduced surface area, lower fractional free volume, and tighter average chain spacing. Gas permeabilities of 6FDA-TrMCA were typical of functionalized polyimides of intrinsic microporosity (PIM-PIs). For example, at 2 atm and 35 °C, 6FDA-TrMCA showed pure-gas H2 and CO2 permeability of 193 and 144 barrer, coupled with H2/CH4 and CO2/CH4 selectivity of 61 and 45, respectively. Notably, in mixed-gas permeation tests with an equimolar CO2-CH4 mixture at a CO2 partial pressure of 12 atm, 6FDA-TrMCA demonstrated performance located on the 2018 mixed-gas upper bound with a CO2 permeability of â¼98 barrer and CO2/CH4 permselectivity of 38. As the first reported COOH-functionalized PIM-PI homopolymer, 6FDA-TrMCA revealed excellent resistance against CO2-induced plasticization at least up to a CO2 partial pressure of 15 atm, covering the range of typical wellhead CO2 partial pressures (5-10 atm).
AB - A novel trimethyl-substituted carboxyl-containing polyimide was synthesized via a one-pot high-temperature polycondensation reaction of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,5-diamino-2,4,6-trimethylbenzoic acid (TrMCA). The polyimide (6FDA-TrMCA) displayed a Brunauer-Emmett-Teller surface area of 260 m2 g-1, demonstrating intrinsic microporosity, in contrast to the related low-free volume COOH-functionalized polyimide 6FDA-DABA. Compared to the nonfunctionalized 6FDA polyimide analogue made from 2,4,6-trimethyl-m-phenylenediamine (TrMPD)-also known as 6FDA-DAM-carboxyl functionalization in 6FDA-TrMCA resulted in reduced surface area, lower fractional free volume, and tighter average chain spacing. Gas permeabilities of 6FDA-TrMCA were typical of functionalized polyimides of intrinsic microporosity (PIM-PIs). For example, at 2 atm and 35 °C, 6FDA-TrMCA showed pure-gas H2 and CO2 permeability of 193 and 144 barrer, coupled with H2/CH4 and CO2/CH4 selectivity of 61 and 45, respectively. Notably, in mixed-gas permeation tests with an equimolar CO2-CH4 mixture at a CO2 partial pressure of 12 atm, 6FDA-TrMCA demonstrated performance located on the 2018 mixed-gas upper bound with a CO2 permeability of â¼98 barrer and CO2/CH4 permselectivity of 38. As the first reported COOH-functionalized PIM-PI homopolymer, 6FDA-TrMCA revealed excellent resistance against CO2-induced plasticization at least up to a CO2 partial pressure of 15 atm, covering the range of typical wellhead CO2 partial pressures (5-10 atm).
UR - http://hdl.handle.net/10754/660383
UR - https://pubs.acs.org/doi/10.1021/acs.iecr.9b04994
UR - http://www.scopus.com/inward/record.url?scp=85074671639&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.9b04994
DO - 10.1021/acs.iecr.9b04994
M3 - Article
SN - 0888-5885
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
ER -