TY - GEN
T1 - Pointwise-in-Time Analysis and Non-Quadratic Lyapunov Functions for Linear Time-Varying Systems
AU - Abate, Matthew
AU - Klett, Corbin
AU - Coogan, Samuel
AU - Feron, Eric
N1 - KAUST Repository Item: Exported on 2021-12-14
Acknowledgements: This work was supported by the KAUST baseline budget
PY - 2021/5/25
Y1 - 2021/5/25
N2 - Performance analysis for linear time-invariant (LTI) systems has been closely tied to quadratic Lyapunov functions ever since it was shown that LTI system stability is equivalent to the existence of such a Lyapunov function. Some metrics for LTI systems, however, have resisted treatment via means of quadratic Lyapunov functions. Among these, point-wise-in-time metrics, such as peak norms, are not captured accurately using these techniques, and this shortcoming has prevented the development of tools to analyze system behavior by means other than e.g. time-domain simulations. This work demonstrates how the more general class of homogeneous polynomial Lyapunov functions can be used to approximate point-wise-in-time behavior for LTI systems with reduced conservatism, and we extend this to the case of linear time-varying (LTV) systems as well. Our findings rely on the recent observation that the search for homogeneous polynomial Lyapunov functions for LTV systems can be recast as a search for quadratic Lyapunov functions for a related hierarchy of time-varying Lyapunov differential equations; thus, performance guarantees for LTV systems are attainable without heavy computation or additional algebraic developments. Numerous examples are provided to illustrate the findings of this work.
AB - Performance analysis for linear time-invariant (LTI) systems has been closely tied to quadratic Lyapunov functions ever since it was shown that LTI system stability is equivalent to the existence of such a Lyapunov function. Some metrics for LTI systems, however, have resisted treatment via means of quadratic Lyapunov functions. Among these, point-wise-in-time metrics, such as peak norms, are not captured accurately using these techniques, and this shortcoming has prevented the development of tools to analyze system behavior by means other than e.g. time-domain simulations. This work demonstrates how the more general class of homogeneous polynomial Lyapunov functions can be used to approximate point-wise-in-time behavior for LTI systems with reduced conservatism, and we extend this to the case of linear time-varying (LTV) systems as well. Our findings rely on the recent observation that the search for homogeneous polynomial Lyapunov functions for LTV systems can be recast as a search for quadratic Lyapunov functions for a related hierarchy of time-varying Lyapunov differential equations; thus, performance guarantees for LTV systems are attainable without heavy computation or additional algebraic developments. Numerous examples are provided to illustrate the findings of this work.
UR - http://hdl.handle.net/10754/670365
UR - https://ieeexplore.ieee.org/document/9483291/
UR - http://www.scopus.com/inward/record.url?scp=85111935279&partnerID=8YFLogxK
U2 - 10.23919/acc50511.2021.9483291
DO - 10.23919/acc50511.2021.9483291
M3 - Conference contribution
SN - 9781665441971
SP - 3550
EP - 3555
BT - 2021 American Control Conference (ACC)
PB - IEEE
ER -