TY - JOUR
T1 - Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates ( n -heptane/ iso -octane/toluene)
AU - Shao, Can
AU - Wang, Haoyi
AU - Atef, Nour
AU - Wang, Zhandong
AU - Chen, Bingjie
AU - Almalki, Maram M.
AU - Zhang, Yan
AU - Cao, Chuangchuang
AU - Yang, Jiuzhong
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2016-CRG5-3022
Acknowledgements: This work was supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-3022, and Saudi Aramco under the FUELCOM program; National Natural Science Foundation of China (51706217).
PY - 2018/7/18
Y1 - 2018/7/18
N2 - Toluene primary reference fuels (TPRFs), i.e., a ternary mixture of toluene, n-heptane and iso-octane, better match the combustion properties of real gasoline fuels compared to simpler binary n-heptane/iso-octane mixtures. While there has been significant research on combustion of n-heptane/iso-octane mixtures, fundamental data characterizing polycyclic aromatic hydrocarbons (PAHs) formation in TPRFs combustion is lacking, especially under pyrolysis conditions. In this work, the pyrolysis of two TPRF mixtures (TPRF70 and TPRF97.5), representing low octane (research octane number 70) and high octane (research octane number 97.5) gasolines, respectively, was studied in a jet-stirred reactor coupled with gas chromatography (GC) analysis and a flow reactor coupled with synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). The experiments indicate that pyrolysis of TPRF70 produced slightly higher benzene and naphthalene than TPRF97.5. In contrast, TPRF97.5 pyrolysis produced slightly higher phenanthrene and pyrene than TPRF70. The mole fraction profiles of aromatics from benzene to pyrene were used to validate TPRF kinetic models from the literature. Specifically, the KAUST-Aramco PAH Mech 1-GS kinetic model was updated to match and elucidate the experimental observations. The kinetic analysis reveals that propargyl radical is a crucial intermediate forming benzene and naphthalene, while benzyl radical, generated from the dehydrogenation of toluene, plays an important role in formation of larger PAHs.
AB - Toluene primary reference fuels (TPRFs), i.e., a ternary mixture of toluene, n-heptane and iso-octane, better match the combustion properties of real gasoline fuels compared to simpler binary n-heptane/iso-octane mixtures. While there has been significant research on combustion of n-heptane/iso-octane mixtures, fundamental data characterizing polycyclic aromatic hydrocarbons (PAHs) formation in TPRFs combustion is lacking, especially under pyrolysis conditions. In this work, the pyrolysis of two TPRF mixtures (TPRF70 and TPRF97.5), representing low octane (research octane number 70) and high octane (research octane number 97.5) gasolines, respectively, was studied in a jet-stirred reactor coupled with gas chromatography (GC) analysis and a flow reactor coupled with synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). The experiments indicate that pyrolysis of TPRF70 produced slightly higher benzene and naphthalene than TPRF97.5. In contrast, TPRF97.5 pyrolysis produced slightly higher phenanthrene and pyrene than TPRF70. The mole fraction profiles of aromatics from benzene to pyrene were used to validate TPRF kinetic models from the literature. Specifically, the KAUST-Aramco PAH Mech 1-GS kinetic model was updated to match and elucidate the experimental observations. The kinetic analysis reveals that propargyl radical is a crucial intermediate forming benzene and naphthalene, while benzyl radical, generated from the dehydrogenation of toluene, plays an important role in formation of larger PAHs.
UR - http://hdl.handle.net/10754/630256
UR - https://www.sciencedirect.com/science/article/pii/S1540748918302700
UR - http://www.scopus.com/inward/record.url?scp=85049930697&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2018.06.087
DO - 10.1016/j.proci.2018.06.087
M3 - Article
SN - 1540-7489
VL - 37
SP - 993
EP - 1001
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
IS - 1
ER -