TY - JOUR
T1 - Pore-scale study of CO2 desublimation and sublimation in a packed bed during cryogenic carbon capture
AU - Lei, Timan
AU - Luo, Kai H.
AU - Hernández Pérez, Francisco E.
AU - Wang, Geng
AU - Yang, Junyu
AU - Cano, Juan Restrepo
AU - Im, Hong G.
N1 - Publisher Copyright:
© The Author(s), 2024.
PY - 2024/8/12
Y1 - 2024/8/12
N2 - Cryogenic carbon capture (CCC) is an innovative technology to desublimate CO2 out of industrial flue gases. A comprehensive understanding of CO2 desublimation and sublimation is essential for widespread application of CCC, which is highly challenging due to the complex physics behind. In this work, a lattice Boltzmann (LB) model is proposed to study CO2 desublimation and sublimation for different operating conditions, including the bed temperature (subcooling degree ∆Ts), gas feed rate (Péclet number Pe) and bed porosity (ψ). The CO2 desublimation and sublimation properties are reproduced. Interactions between convective CO2 supply and desublimation/sublimation intensity are analysed. In the single-grain case, Pe is suggested to exceed a critical value Pec at each ∆Ts to avoid the convection-limited regime. Beyond Pec, the CO2 capture rate (vc) grows monotonically with ∆Ts, indicating a desublimation-limited regime. In the packed bed case, multiple grains render the convective CO2 supply insufficient and make CCC operate under the convection-limited mechanism. Besides, in small-∆Ts and high-Pe tests, CO2 desublimation becomes insufficient compared with convective CO2 supply, thus introducing the desublimation-limited regime with severe CO2 capture capacity loss (ηd). Moreover, large ψ enhances gas mobility while decreasing cold grain volume. A moderate porosity ψc is recommended for improving the CO2 capture performance. By analysing vc and ηd, regime diagrams are proposed in ∆Ts–Pe space to show distributions of convection-limited and desublimation-limited regimes, thus suggesting optimal conditions for efficient CO2 capture. This work develops a viable LB model to examine CCC under extensive operating conditions, contributing to facilitating its application.
AB - Cryogenic carbon capture (CCC) is an innovative technology to desublimate CO2 out of industrial flue gases. A comprehensive understanding of CO2 desublimation and sublimation is essential for widespread application of CCC, which is highly challenging due to the complex physics behind. In this work, a lattice Boltzmann (LB) model is proposed to study CO2 desublimation and sublimation for different operating conditions, including the bed temperature (subcooling degree ∆Ts), gas feed rate (Péclet number Pe) and bed porosity (ψ). The CO2 desublimation and sublimation properties are reproduced. Interactions between convective CO2 supply and desublimation/sublimation intensity are analysed. In the single-grain case, Pe is suggested to exceed a critical value Pec at each ∆Ts to avoid the convection-limited regime. Beyond Pec, the CO2 capture rate (vc) grows monotonically with ∆Ts, indicating a desublimation-limited regime. In the packed bed case, multiple grains render the convective CO2 supply insufficient and make CCC operate under the convection-limited mechanism. Besides, in small-∆Ts and high-Pe tests, CO2 desublimation becomes insufficient compared with convective CO2 supply, thus introducing the desublimation-limited regime with severe CO2 capture capacity loss (ηd). Moreover, large ψ enhances gas mobility while decreasing cold grain volume. A moderate porosity ψc is recommended for improving the CO2 capture performance. By analysing vc and ηd, regime diagrams are proposed in ∆Ts–Pe space to show distributions of convection-limited and desublimation-limited regimes, thus suggesting optimal conditions for efficient CO2 capture. This work develops a viable LB model to examine CCC under extensive operating conditions, contributing to facilitating its application.
KW - convection in porous media
KW - coupled diffusion
KW - flow
KW - solidification/melting
UR - http://www.scopus.com/inward/record.url?scp=85201422554&partnerID=8YFLogxK
U2 - 10.1017/jfm.2024.351
DO - 10.1017/jfm.2024.351
M3 - Article
AN - SCOPUS:85201422554
SN - 0022-1120
VL - 990
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
M1 - A6
ER -