Abstract
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective reveals a multitude of overlooked metrics, tasks, and data types, such as uncertainty, active and continual learning, and scientific data, that demand attention. Bayesian deep learning (BDL) constitutes a promising avenue, offering advantages across these diverse settings. This paper posits that BDL can elevate the capabilities of deep learning. It revisits the strengths of BDL, acknowledges existing challenges, and highlights some exciting research avenues aimed at addressing these obstacles. Looking ahead, the discussion focuses on possible ways to combine large-scale foundation models with BDL to unlock their full potential.
Original language | English (US) |
---|---|
Pages | 39556-39586 |
Number of pages | 31 |
State | Published - 2024 |
Event | 41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria Duration: Jul 21 2024 → Jul 27 2024 |
Conference
Conference | 41st International Conference on Machine Learning, ICML 2024 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 07/21/24 → 07/27/24 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability