TY - JOUR
T1 - Possible role of differential growth in airway wall remodeling in asthma
AU - Moulton, D. E.
AU - Goriely, A.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST), and based in part upon work supported by the National Science Foundation under grant DMS-0907773 (to A. Goriely). A. Goriely is a Wolfson/Royal Society Merit Award holder.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/1/21
Y1 - 2011/1/21
N2 - Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol 110: 1003-1012, 2011. First published January 20, 2011; doi:10.1152/japplphysiol.00991.2010.- Airway remodeling in patients with chronic asthma is characterized by a thickening of the airway walls. It has been demonstrated in previous theoretical models that this change in thickness can have an important mechanical effect on the properties of the wall, in particular on the phenomenon of mucosal folding induced by smooth muscle contraction. In this paper, we present a model for mucosal folding of the airway in the context of growth. The airway is modeled as a bilayered cylindrical tube, with both geometric and material nonlinearities accounted for via the theory of finite elasticity. Growth is incorporated into the model through the theory of morphoelasticity. We explore a range of growth possibilities, allowing for anisotropic growth as well as different growth rates in each layer. Such nonuniform growth, referred to as differential growth, can change the properties of the material beyond geometrical changes through the generation of residual stresses. We demonstrate that differential growth can have a dramatic impact on mucosal folding, in particular on the critical pressure needed to induce folding, the buckling pattern, as well as airway narrowing. We conclude that growth may be an important component in airway remodeling. Copyright © 2011 the American Physiological Society.
AB - Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol 110: 1003-1012, 2011. First published January 20, 2011; doi:10.1152/japplphysiol.00991.2010.- Airway remodeling in patients with chronic asthma is characterized by a thickening of the airway walls. It has been demonstrated in previous theoretical models that this change in thickness can have an important mechanical effect on the properties of the wall, in particular on the phenomenon of mucosal folding induced by smooth muscle contraction. In this paper, we present a model for mucosal folding of the airway in the context of growth. The airway is modeled as a bilayered cylindrical tube, with both geometric and material nonlinearities accounted for via the theory of finite elasticity. Growth is incorporated into the model through the theory of morphoelasticity. We explore a range of growth possibilities, allowing for anisotropic growth as well as different growth rates in each layer. Such nonuniform growth, referred to as differential growth, can change the properties of the material beyond geometrical changes through the generation of residual stresses. We demonstrate that differential growth can have a dramatic impact on mucosal folding, in particular on the critical pressure needed to induce folding, the buckling pattern, as well as airway narrowing. We conclude that growth may be an important component in airway remodeling. Copyright © 2011 the American Physiological Society.
UR - http://hdl.handle.net/10754/599346
UR - https://www.physiology.org/doi/10.1152/japplphysiol.00991.2010
UR - http://www.scopus.com/inward/record.url?scp=79954989006&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00991.2010
DO - 10.1152/japplphysiol.00991.2010
M3 - Article
C2 - 21252217
SN - 8750-7587
VL - 110
SP - 1003
EP - 1012
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 4
ER -