TY - JOUR
T1 - Post-Disaster Communications: Enabling Technologies, Architectures, and Open Challenges
AU - Matracia, Maurilio
AU - Saeed, Nasir
AU - Kishk, Mustafa A.
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2022-09-14
PY - 2022/7/18
Y1 - 2022/7/18
N2 - The number of disasters has increased over the past decade where these calamities significantly affect the functionality of communication networks. In the context of 6G, airborne and spaceborne networks offer hope in disaster recovery to serve the underserved and to be resilient in calamities. Therefore, our paper reviews the state-of-the-art literature on post-disaster wireless communication networks and provides insights for the future establishment of such networks. In particular, we first give an overview of the works investigating the general procedures and strategies for facing any large-scale disaster. Then, we present technological solutions for post-disaster communications, such as the recovery of the terrestrial infrastructure, installing aerial networks, and using spaceborne networks. Afterwards, we shed light on the technological aspects of post-disaster networks, primarily the physical and networking issues. We present the literature on channel modeling, coverage and capacity, radio resource management, localization, and energy efficiency in the physical layer part, and discuss the integrated space-air-ground architectures, routing, delay-tolerant/software-defined networks, and edge computing in the networking layer part. This paper also includes interesting simulation results which can provide practical guidelines about the deployment of ad hoc network architectures in emergency scenarios. Finally, we present several promising research directions, namely backhauling, cache-enabled and intelligent reflective surface-enabled networks, placement optimization of aerial base stations (ABSs), and the mobility-related aspects that come into play when deploying aerial networks, such as planning their trajectories and the consequent handovers (HOs).
AB - The number of disasters has increased over the past decade where these calamities significantly affect the functionality of communication networks. In the context of 6G, airborne and spaceborne networks offer hope in disaster recovery to serve the underserved and to be resilient in calamities. Therefore, our paper reviews the state-of-the-art literature on post-disaster wireless communication networks and provides insights for the future establishment of such networks. In particular, we first give an overview of the works investigating the general procedures and strategies for facing any large-scale disaster. Then, we present technological solutions for post-disaster communications, such as the recovery of the terrestrial infrastructure, installing aerial networks, and using spaceborne networks. Afterwards, we shed light on the technological aspects of post-disaster networks, primarily the physical and networking issues. We present the literature on channel modeling, coverage and capacity, radio resource management, localization, and energy efficiency in the physical layer part, and discuss the integrated space-air-ground architectures, routing, delay-tolerant/software-defined networks, and edge computing in the networking layer part. This paper also includes interesting simulation results which can provide practical guidelines about the deployment of ad hoc network architectures in emergency scenarios. Finally, we present several promising research directions, namely backhauling, cache-enabled and intelligent reflective surface-enabled networks, placement optimization of aerial base stations (ABSs), and the mobility-related aspects that come into play when deploying aerial networks, such as planning their trajectories and the consequent handovers (HOs).
UR - http://hdl.handle.net/10754/676053
UR - https://ieeexplore.ieee.org/document/9832657/
U2 - 10.1109/OJCOMS.2022.3192040
DO - 10.1109/OJCOMS.2022.3192040
M3 - Article
SN - 2644-125X
SP - 1
EP - 1
JO - IEEE Open Journal of the Communications Society
JF - IEEE Open Journal of the Communications Society
ER -