TY - GEN
T1 - Power control of grid-connected high-gain boost full-bridge modular multilevel converter
AU - Elserougi, Ahmed A.
AU - Massoud, Ahmed M.
AU - Ahmed, Shehab
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/2
Y1 - 2017/7/2
N2 - Conventional Modular Multilevel Converter (MMC) with half-bridge submodules (HB-SMs) can be used for gird-integration of renewable energy sources, but with limited voltage gain. To elevate the generated ac output voltage level, a bulky low-frequency step-up transformer can be employed at the converter ac side. Alternatively, single-stage dc-ac Boost FullBridge MMC (BFB-MMC) can be used effectively. In this paper, the performance of high-gain grid-connected BFB-MMC is investigated under active and reactive power control. The BFB-MMC can generate an ac output voltage with magnitude of kVdc where k is a positive integer number, and Vdc is the input dc voltage level. Each arm in the BFB-MMC contains (2k+1) Full-bridge submodules (FB-SMs) each rated at 0.5 Vdc. Each arm is controlled to generate bipolar sinusoidal stepped voltage ranged from (0.5+k) Vdc to (0.5-k)Vdc with steps of 0.5 Vdc while keeping the sum of upper and lower arm voltages in the same leg equals the input dc voltage. A Detailed illustration for BFB-MMC operational concept, capacitor voltage balancing technique, and active and reactive power controller is presented. Finally, simulation model for the grid-connected BFB-MMC has been built. The simulation results show the effectiveness of BFB-MMC in the grid-connected applications.
AB - Conventional Modular Multilevel Converter (MMC) with half-bridge submodules (HB-SMs) can be used for gird-integration of renewable energy sources, but with limited voltage gain. To elevate the generated ac output voltage level, a bulky low-frequency step-up transformer can be employed at the converter ac side. Alternatively, single-stage dc-ac Boost FullBridge MMC (BFB-MMC) can be used effectively. In this paper, the performance of high-gain grid-connected BFB-MMC is investigated under active and reactive power control. The BFB-MMC can generate an ac output voltage with magnitude of kVdc where k is a positive integer number, and Vdc is the input dc voltage level. Each arm in the BFB-MMC contains (2k+1) Full-bridge submodules (FB-SMs) each rated at 0.5 Vdc. Each arm is controlled to generate bipolar sinusoidal stepped voltage ranged from (0.5+k) Vdc to (0.5-k)Vdc with steps of 0.5 Vdc while keeping the sum of upper and lower arm voltages in the same leg equals the input dc voltage. A Detailed illustration for BFB-MMC operational concept, capacitor voltage balancing technique, and active and reactive power controller is presented. Finally, simulation model for the grid-connected BFB-MMC has been built. The simulation results show the effectiveness of BFB-MMC in the grid-connected applications.
UR - http://www.scopus.com/inward/record.url?scp=85049224857&partnerID=8YFLogxK
U2 - 10.1109/SPEC.2017.8333655
DO - 10.1109/SPEC.2017.8333655
M3 - Conference contribution
AN - SCOPUS:85049224857
T3 - Proceedings - 2017 IEEE Southern Power Electronics Conference, SPEC 2017
SP - 1
EP - 5
BT - Proceedings - 2017 IEEE Southern Power Electronics Conference, SPEC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Southern Power Electronics Conference, SPEC 2017
Y2 - 4 December 2017 through 7 December 2017
ER -