TY - JOUR
T1 - Pre-Darcy flow in shales: Effects of the rate-dependent slip
AU - Cui, Jiangfeng
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2019/8/17
Y1 - 2019/8/17
N2 - The pre-Darcy flow phenomena in porous media is still not well understood, and the liquid slip mechanism in shales is controversial. Both issues need more exploration. In the field of microfluidic research, the concept of the slip length is widely employed to characterize the deviation from the no-slip flow, and it is recognized that the slip is rate-dependent. For the first time, the rate-dependent slip is proposed as an explanation for the pre-Darcy flow phenomena in porous media and the compromise between existing controversial views with regard to the liquid slip flow in shales based on careful analysis, and then such slip is incorporated in the one-dimension unsteady diffusion equation for liquids. The finite difference method is employed to numerically solve the equation, and detailed sensitivity analysis is conducted for the critical shear stress, the pore radius and the slip length. The results are summarized, and suggestions for future research are provided. This work can provide new insight into the pre-Darcy flow phenomena in the nanoporous media, and can compromise between existing controversial views regarding the liquid slip mechanism in shales. More importantly, this subject is also significant to research and develop EOR methods in shale reservoirs.
AB - The pre-Darcy flow phenomena in porous media is still not well understood, and the liquid slip mechanism in shales is controversial. Both issues need more exploration. In the field of microfluidic research, the concept of the slip length is widely employed to characterize the deviation from the no-slip flow, and it is recognized that the slip is rate-dependent. For the first time, the rate-dependent slip is proposed as an explanation for the pre-Darcy flow phenomena in porous media and the compromise between existing controversial views with regard to the liquid slip flow in shales based on careful analysis, and then such slip is incorporated in the one-dimension unsteady diffusion equation for liquids. The finite difference method is employed to numerically solve the equation, and detailed sensitivity analysis is conducted for the critical shear stress, the pore radius and the slip length. The results are summarized, and suggestions for future research are provided. This work can provide new insight into the pre-Darcy flow phenomena in the nanoporous media, and can compromise between existing controversial views regarding the liquid slip mechanism in shales. More importantly, this subject is also significant to research and develop EOR methods in shale reservoirs.
UR - http://hdl.handle.net/10754/656742
UR - https://linkinghub.elsevier.com/retrieve/pii/S0920410519308149
UR - http://www.scopus.com/inward/record.url?scp=85070884761&partnerID=8YFLogxK
U2 - 10.1016/j.petrol.2019.106393
DO - 10.1016/j.petrol.2019.106393
M3 - Article
SN - 0920-4105
VL - 183
SP - 106393
JO - Journal of Petroleum Science and Engineering
JF - Journal of Petroleum Science and Engineering
ER -