TY - JOUR
T1 - Prestack exploding reflector modelling and migration for anisotropic media
AU - Alkhalifah, Tariq Ali
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: I thank Alexey Stovas, Anton Duchkov and Pavel Golikov for many stimulating discussions on the subject of DSR. I thank KAUST and specifically the AEA round 3 project for its support. I also thank the associate editor and two reviewers for their fruitful and critical review of the manuscript.
PY - 2014/10/9
Y1 - 2014/10/9
N2 - The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
AB - The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
UR - http://hdl.handle.net/10754/563794
UR - http://doi.wiley.com/10.1111/1365-2478.12148
UR - http://www.scopus.com/inward/record.url?scp=84919838484&partnerID=8YFLogxK
U2 - 10.1111/1365-2478.12148
DO - 10.1111/1365-2478.12148
M3 - Article
SN - 0016-8025
VL - 63
SP - 2
EP - 10
JO - Geophysical Prospecting
JF - Geophysical Prospecting
IS - 1
ER -