TY - JOUR
T1 - Probiotics mitigate thermal stress- and pathogen-driven impacts on coral skeleton
AU - Moradi, Mahdi
AU - Magalhaes, Phillipe R.
AU - Peixoto, Raquel S.
AU - Jonck, Cassia C.A.C.
AU - François, Daniel
AU - Bellot, Anna Clara F.
AU - Teixeira, Jonatã B.
AU - Silveira, Carla S.
AU - Duarte, Gustavo
AU - Evangelista, Heitor
AU - Barbosa, Catia F.
N1 - Funding Information:
We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Process No. 140727/2015-9, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001, for the funding. Acknowledgments
Publisher Copyright:
Copyright © 2023 Moradi, Magalhaes, Peixoto, Jonck, François, Bellot, Teixeira, Silveira, Duarte, Evangelista and Barbosa.
PY - 2023
Y1 - 2023
N2 - Threats leading to a reduction in coral populations are apparent worldwide. Several different approaches have been tested to accelerate the adaptation of corals to a changing climate. Here, we evaluated the skeleton structure, crystal habit, and chemical changes of the coral Pocillopora damicornis in response to the pathogen (Vibrio coralliilyticus) and probiotic (Beneficial Microorganisms for Corals, BMCs) inoculation under ambient conditions (26 °C) and thermal stress (30 °C) during a 50-day mesocosm experiment. The skeletons were analyzed using microtomography, energy-dispersive x-ray spectroscopy (EDX/SEM), and densitometry to investigate the skeleto-physico-chemical micro-morphological changes in porosity, median pore-size diameter, crystal habit, Mg/Ca, Sr/Ca, the skeleton mineral density (g/cm2) and skeleton mineral content (g–2). The results indicate considerable changes in the coral skeleton caused by both temperature and microbial inoculation. Most importantly, lower density (to ∼ x̄ 0.5 g/cm2) and higher porosity (up to ∼ x̄ 47%) were correlated with inoculation of V. coralliilyticus and mitigated by probiotics. BMCs also substantially increased calcification, as evidenced by Mg/Ca in the skeleton of thermally stressed corals. At the micron scale, aragonite crystal fibbers precipitated during the experiments showed an acicular habit in thermally stressed and pathogen-inoculated corals kept at 30 °C. In contrast, a spherulitic habit, characteristic of high growth rates, was observed in corals inoculated with both BMCs and V. coralliilyticus. Our findings reveal that pathogen inoculation and thermal stress had notable impacts on coral skeleton properties, including porosity, density, and crystal morphology, in a short period of time, which highlights the potential impacts of shifts in climate warming and environmental quality. Interestingly, BMCs played a role in maintaining the properties of skeleton calcification.
AB - Threats leading to a reduction in coral populations are apparent worldwide. Several different approaches have been tested to accelerate the adaptation of corals to a changing climate. Here, we evaluated the skeleton structure, crystal habit, and chemical changes of the coral Pocillopora damicornis in response to the pathogen (Vibrio coralliilyticus) and probiotic (Beneficial Microorganisms for Corals, BMCs) inoculation under ambient conditions (26 °C) and thermal stress (30 °C) during a 50-day mesocosm experiment. The skeletons were analyzed using microtomography, energy-dispersive x-ray spectroscopy (EDX/SEM), and densitometry to investigate the skeleto-physico-chemical micro-morphological changes in porosity, median pore-size diameter, crystal habit, Mg/Ca, Sr/Ca, the skeleton mineral density (g/cm2) and skeleton mineral content (g–2). The results indicate considerable changes in the coral skeleton caused by both temperature and microbial inoculation. Most importantly, lower density (to ∼ x̄ 0.5 g/cm2) and higher porosity (up to ∼ x̄ 47%) were correlated with inoculation of V. coralliilyticus and mitigated by probiotics. BMCs also substantially increased calcification, as evidenced by Mg/Ca in the skeleton of thermally stressed corals. At the micron scale, aragonite crystal fibbers precipitated during the experiments showed an acicular habit in thermally stressed and pathogen-inoculated corals kept at 30 °C. In contrast, a spherulitic habit, characteristic of high growth rates, was observed in corals inoculated with both BMCs and V. coralliilyticus. Our findings reveal that pathogen inoculation and thermal stress had notable impacts on coral skeleton properties, including porosity, density, and crystal morphology, in a short period of time, which highlights the potential impacts of shifts in climate warming and environmental quality. Interestingly, BMCs played a role in maintaining the properties of skeleton calcification.
KW - climate change
KW - coral calcification
KW - disease
KW - micro-morphologies
KW - Pocillopora damicornis
KW - porosity
KW - probiotics
KW - Vibrio coralliilyticus
UR - http://www.scopus.com/inward/record.url?scp=85173490978&partnerID=8YFLogxK
U2 - 10.3389/fmars.2023.1212690
DO - 10.3389/fmars.2023.1212690
M3 - Article
AN - SCOPUS:85173490978
SN - 2296-7745
VL - 10
JO - FRONTIERS IN MARINE SCIENCE
JF - FRONTIERS IN MARINE SCIENCE
M1 - 1212690
ER -