Progress in parallel implementation of the multilevel plane wave time domain algorithm

Yang Liu, Hakan Bagci, Eric Michielssen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.
Original languageEnglish (US)
Title of host publication2013 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781479911295
DOIs
StatePublished - Jul 2013

Fingerprint

Dive into the research topics of 'Progress in parallel implementation of the multilevel plane wave time domain algorithm'. Together they form a unique fingerprint.

Cite this