TY - JOUR
T1 - Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures
AU - Wang, Limu
AU - Kodzius, Rimantas
AU - Yi, Xin
AU - Li, Shunbo
AU - Hui, Yu Sanna
AU - Wen, Weijia
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): SA-C0040/UK-C0016
Acknowledgements: Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST); Hong Kong RGC grants HKUST 603608 and 604710
PY - 2012/4/12
Y1 - 2012/4/12
N2 - We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.
AB - We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.
UR - http://hdl.handle.net/10754/303151
UR - http://linkinghub.elsevier.com/retrieve/pii/S0925400512003607
UR - http://www.scopus.com/inward/record.url?scp=84861571534&partnerID=8YFLogxK
U2 - 10.1016/j.snb.2012.04.011
DO - 10.1016/j.snb.2012.04.011
M3 - Article
SN - 0925-4005
VL - 168
SP - 214
EP - 222
JO - Sensors and Actuators B: Chemical
JF - Sensors and Actuators B: Chemical
ER -