Abstract
Aluminum (Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium. Nonetheless, given the nascent stage of advancement in Al-ion batteries (AIBs), attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging. Herein, we demonstrate a C3N4-derived layered N,S heteroatom−doped carbon, obtained at different pyrolysis temperatures, as a cathode material for AIBs, encompassing the diffusion−controlled intercalation and surface-induced capacity with ultrahigh reversibility. The developed layered N,S-doped corbon (N,S-C) cathode, synthesized at 900 °C, delivers a specific capacity of 330 mAh g−1 with a relatively high coulombic efficiency of ~85% after 500 cycles under a current density of 0.5 A g−1. Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms, the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance (61 mAh g−1 at 20 A g−1) and ultrahigh reversibility (90 mAh g−1 at 5 A g−1 after 10 000 cycles).
Original language | English (US) |
---|---|
Article number | e12733 |
Journal | Energy and Environmental Materials |
Volume | 7 |
Issue number | 5 |
DOIs | |
State | Published - Sep 2024 |
Keywords
- 2D carbon
- adsorption energy
- heteroatoms-doping
- high capacity
- long cycling life
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science
- Water Science and Technology
- Environmental Science (miscellaneous)
- Waste Management and Disposal
- Energy (miscellaneous)