TY - JOUR
T1 - Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1
AU - Swaidan, Raja
AU - Ghanem, Bader
AU - Litwiller, Eric
AU - Pinnau, Ingo
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported by the King Abdullah University of Science and Technology baseline funding for Ingo Pinnau.
PY - 2014/5
Y1 - 2014/5
N2 - The prototypical solution-processable polymer of intrinsic microporosity, PIM-1, and derivatives thereof offer combinations of permeability and selectivity that make them potential candidate materials for membrane-based gas separations. Paramount to the design and evaluation of PIMs for economical natural gas sweetening is a high and stable CO2/CH4 selectivity under realistic, mixed-gas conditions. Here, amidoxime-functionalized PIM-1 (AO-PIM-1) was prepared and examined for fundamental structure/property relationships. Qualitative NLDFT pore-size distribution analyses of physisorption isotherms (N2 at -196 oC; CO2 at 0 oC) reveal a tightened microstructure indicating size-sieving ultra-microporosity (<7Å). AO-PIM-1 demonstrated a three-fold increase in αD(CO2/CH4) over PIM-1, surpassing the 2008 upper bound with P(CO2)=1153Barrer and ideal α(CO2/CH4)=34. Under a 50:50 CO2:CH4 mixed-gas feed, AO-PIM-1 showed less selectivity loss than PIM-1, maintaining a mixed-gas α(CO2/CH4) ~21 across a 20bar pressure range. Conversely, PIM-1 endured up to 60% increases in mixed-gas CH4 permeability over pure-gas values concurrent with a selectivity of only ~8 at 20bar. A pervasive intermolecular hydrogen bonding network in AO-PIM-1 predominantly yields a rigidified microstructure that mitigates CO2-induced matrix dilations, reducing detrimental mixed-gas CH4 copermeation. © 2014 Elsevier B.V.
AB - The prototypical solution-processable polymer of intrinsic microporosity, PIM-1, and derivatives thereof offer combinations of permeability and selectivity that make them potential candidate materials for membrane-based gas separations. Paramount to the design and evaluation of PIMs for economical natural gas sweetening is a high and stable CO2/CH4 selectivity under realistic, mixed-gas conditions. Here, amidoxime-functionalized PIM-1 (AO-PIM-1) was prepared and examined for fundamental structure/property relationships. Qualitative NLDFT pore-size distribution analyses of physisorption isotherms (N2 at -196 oC; CO2 at 0 oC) reveal a tightened microstructure indicating size-sieving ultra-microporosity (<7Å). AO-PIM-1 demonstrated a three-fold increase in αD(CO2/CH4) over PIM-1, surpassing the 2008 upper bound with P(CO2)=1153Barrer and ideal α(CO2/CH4)=34. Under a 50:50 CO2:CH4 mixed-gas feed, AO-PIM-1 showed less selectivity loss than PIM-1, maintaining a mixed-gas α(CO2/CH4) ~21 across a 20bar pressure range. Conversely, PIM-1 endured up to 60% increases in mixed-gas CH4 permeability over pure-gas values concurrent with a selectivity of only ~8 at 20bar. A pervasive intermolecular hydrogen bonding network in AO-PIM-1 predominantly yields a rigidified microstructure that mitigates CO2-induced matrix dilations, reducing detrimental mixed-gas CH4 copermeation. © 2014 Elsevier B.V.
UR - http://hdl.handle.net/10754/563515
UR - https://linkinghub.elsevier.com/retrieve/pii/S0376738814000787
UR - http://www.scopus.com/inward/record.url?scp=84894104248&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2014.01.055
DO - 10.1016/j.memsci.2014.01.055
M3 - Article
SN - 0376-7388
VL - 457
SP - 95
EP - 102
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -