Abstract
Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200–800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.
Original language | English (US) |
---|---|
Pages (from-to) | 9738-9742 |
Number of pages | 5 |
Journal | Angewandte Chemie |
Volume | 128 |
Issue number | 33 |
DOIs | |
State | Published - Jun 29 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- General Medicine