QAUST: protein function prediction using structure similarity search, protein interaction and functional sequence motifs

Fatima Z. Smaili, Shuye Tian, Ambrish Roy, Meshari Alazmi, Stefan T. Arold, Srayanta Mukherjee, P. Scott Hefty, Wei Chen, Xin Gao

Research output: Contribution to journalArticlepeer-review

Abstract

The number of available protein sequences in public databases is increasing exponentially. However, a significant percentage of these sequences lack functional annotation, which is essential for the understanding of how biological systems operate. We propose a novel method, QAUST, to infer protein functions, specifically Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. Our method uses three sources of information: structure information encoded by global and local structure similarity search, biological network information inferred by protein-protein interaction data, and sequence information extracted from functionally discriminative sequence motifs. The three pieces of information are combined by consensus averaging to make the final prediction. Our approach has been tested on 500 protein targets from the CAFA benchmark set. The results show that our method provides accurate functional annotation and outperforms other prediction methods based on sequence similarity search or threading. We further demonstrate that a previously unknown function of TRIM22 protein predicted by QAUST can be experimentally validated. Availability: http://www.cbrc.kaust.edu.sa/qaust/submit/.
Original languageEnglish (US)
JournalAccepted by Genomics, Proteomics, and Bioinformatics
StatePublished - 2020

Fingerprint

Dive into the research topics of 'QAUST: protein function prediction using structure similarity search, protein interaction and functional sequence motifs'. Together they form a unique fingerprint.

Cite this