TY - JOUR
T1 - Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions
AU - Wu, Kunlin
AU - Bai, Meilin
AU - Sanvito, Stefano
AU - Hou, Shimin
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): FIC/2010/08
Acknowledgements: This project was supported by the National Natural Science Foundation of China (Grant No. 61071012) and the MOST of China (Grant Nos. 2011CB933001 and 2013CB933404). S. S. thanks additional funding support from Science Foundation of Ireland (Grant No. 07/IN/I945), by KAUST (FIC/2010/08), and by CRANN.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/11/19
Y1 - 2013/11/19
N2 - The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.
AB - The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.
UR - http://hdl.handle.net/10754/599426
UR - http://aip.scitation.org/doi/10.1063/1.4830399
UR - http://www.scopus.com/inward/record.url?scp=84903363887&partnerID=8YFLogxK
U2 - 10.1063/1.4830399
DO - 10.1063/1.4830399
M3 - Article
C2 - 24320340
SN - 0021-9606
VL - 139
SP - 194703
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
IS - 19
ER -