@article{233c62d8a6bc4ef990283228b4d4ed20,
title = "Quantum anomalous Hall effect and Anderson-Chern insulating regime in the noncollinear antiferromagnetic 3Q state",
abstract = "We investigate the emergence of both quantum anomalous Hall and disorder-induced Anderson-Chern insulating phases in two-dimensional hexagonal lattices, with an antiferromagnetically ordered 3Q state and in the absence of spin-orbit coupling. Using tight-binding modeling, we show that such systems display not only a spin-polarized edge-localized current, the chirality of which is energy dependent, but also an impurity-induced transition from trivial metallic to topological insulating regimes, through one edge mode plateau. We compute the gaps' phase diagrams and demonstrate the robustness of the edge channel against deformation and disorder. Our study hints at the 3Q state as a promising building block for dissipationless spintronics based on antiferromagnets.",
author = "Ndiaye, {Papa Birame} and Adel Abbout and Goli, {V. M. L. D. P.} and Aurelien Manchon",
note = "KAUST Repository Item: Exported on 2020-10-01 Acknowledged KAUST grant number(s): Grant No. OSR-2015-CRG4-2626 Acknowledgements: The authors thank F. Pi{\'e}chon, Z. Thiam, G. E. W. Bauer, K.-J. Lee, X. R. Wang, and H. Bahlouli for valuable discussions. We also acknowledge computing time on the supercomputers SHAHEEN at the KAUST Supercomputing Centre and the team assistance. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Office of Sponsored Research (OSR) under Grant No. OSR-2015-CRG4-2626. P.B.N. acknowledges the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals (KFUPM) through Project No. SR181002.",
year = "2019",
month = oct,
day = "28",
doi = "10.1103/physrevb.100.144440",
language = "English (US)",
volume = "100",
journal = "Physical Review B",
issn = "2469-9950",
publisher = "American Physical Society",
number = "14",
}