Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications

Smitha S. Patil, Madhura V, Irshad Kammakakam, MH Halashankar Swamy, K. Sadashiva Patil, Zhiping Lai, Anil Rao H N

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Anion-exchange membrane fuel cells (AEMFCs) utilizing quaternary ammonium functionalized poly(arylene ether sulfone)s have been rapidly advanced in the clean energy research arena. However, it is highly desirable to integrate the benefits of quaternary ammonium cations in the polymeric membrane systems to achieve a high-power output together with substantial stabilities that significantly reduce the material costs. Herein, we report the tethering of two different quinuclidinium and piperidinium cations separated by a flexible –(CH2)4˗ spacer as a dual hydroxide conductor in the poly(arylene ether sulfone)s copolymer membrane (QP-PES) for enhancing the structural and physical properties as well as the ionic conductivities. The results proved that the tethering of dual hydroxide conductor in the PES backbone led to show maximum hydroxide conductivity of 88 mS cm−1 at 80 °C while enabling a hydrophilic/hydrophobic micro-phase separation due to the presence of flexible alkyl spacer. We also investigated the properties of a single hydroxide conductor exclusively comprising the quinuclidinium cation (Q-PES) and compared it with that of QP-PES. Interestingly, both the Q-PES and QP-PES membranes displayed superior thermal, mechanical, and dimensional stabilities. Most importantly, the QP-PES membrane demonstrated excellent alkaline stability over the period of 1000 h due to the existence of dual hydroxide conductor together with alkyl spacer units. Furthermore, the maximum power density of a H2/O2 single cell using QP-PES (92.3 mWcm−2) is higher than that of QP-PES (70.0 mWcm−2). The results provide a greater perception to design the high performance AEM materials.
Original languageEnglish (US)
Pages (from-to)140826
JournalElectrochimica Acta
Volume426
DOIs
StatePublished - Jul 12 2022

ASJC Scopus subject areas

  • General Chemical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications'. Together they form a unique fingerprint.

Cite this