TY - JOUR
T1 - Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer
AU - Fan, Ming
AU - Zhang, Peng
AU - Wang, Yue
AU - Peng, Weijun
AU - Wang, Shiwei
AU - Gao, Xin
AU - Xu, Maosheng
AU - Li, Lihua
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): URF/1/3450-01
Acknowledgements: This work has received funding by the National Natural Science Foundation of China (61731008, 61871428, and 61401131), the Natural Science Foundation of Zhejiang Province of China (LJ19H180001, LZ15F010001), and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/3450-01.
PY - 2019/1/7
Y1 - 2019/1/7
N2 - OBJECTIVES:This study aimed to predict the molecular subtypes of breast cancer via intratumoural and peritumoural radiomic analysis with subregion identification based on the decomposition of contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS:The study included 211 women with histopathologically confirmed breast cancer. We utilised a completely unsupervised convex analysis of mixtures (CAM) method by unmixing dynamic imaging series from heterogeneous tissues. Each tumour and the surrounding parenchyma were thus decomposed into multiple subregions, representing different vascular characterisations, from which radiomic features were extracted. A random forest model was trained and tested using a leave-one-out cross-validation (LOOCV) method to predict breast cancer subtypes. The predictive models from tumoural and peritumoural subregions were fused for classification. RESULTS:Tumour and peritumour DCE-MR images were decomposed into three compartments, representing plasma input, fast-flow kinetics, and slow-flow kinetics. The tumour subregion related to fast-flow kinetics showed the best performance among the subregions for differentiating between patients with four molecular subtypes (area under the receiver operating characteristic curve (AUC) = 0.832), exhibiting an AUC value significantly (p < 0.0001) higher than that obtained with the entire tumour (AUC = 0.719). When the tumour- and parenchyma-based predictive models were fused, the performance, measured as the AUC, increased to 0.897; this value was significantly higher than that obtained with other tumour partition methods. CONCLUSIONS:Radiomic analysis of intratumoural and peritumoural heterogeneity based on the decomposition of image time-series signals has the potential to more accurately identify tumour kinetic features and serve as a valuable clinical marker to enhance the prediction of breast cancer subtypes. KEY POINTS:• Decomposition of image time-series signals has the potential to more accurately identify tumour kinetic features. • Fusion of intratumoural- and peritumoural-based predictive models improves the prediction of breast cancer subtypes.
AB - OBJECTIVES:This study aimed to predict the molecular subtypes of breast cancer via intratumoural and peritumoural radiomic analysis with subregion identification based on the decomposition of contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS:The study included 211 women with histopathologically confirmed breast cancer. We utilised a completely unsupervised convex analysis of mixtures (CAM) method by unmixing dynamic imaging series from heterogeneous tissues. Each tumour and the surrounding parenchyma were thus decomposed into multiple subregions, representing different vascular characterisations, from which radiomic features were extracted. A random forest model was trained and tested using a leave-one-out cross-validation (LOOCV) method to predict breast cancer subtypes. The predictive models from tumoural and peritumoural subregions were fused for classification. RESULTS:Tumour and peritumour DCE-MR images were decomposed into three compartments, representing plasma input, fast-flow kinetics, and slow-flow kinetics. The tumour subregion related to fast-flow kinetics showed the best performance among the subregions for differentiating between patients with four molecular subtypes (area under the receiver operating characteristic curve (AUC) = 0.832), exhibiting an AUC value significantly (p < 0.0001) higher than that obtained with the entire tumour (AUC = 0.719). When the tumour- and parenchyma-based predictive models were fused, the performance, measured as the AUC, increased to 0.897; this value was significantly higher than that obtained with other tumour partition methods. CONCLUSIONS:Radiomic analysis of intratumoural and peritumoural heterogeneity based on the decomposition of image time-series signals has the potential to more accurately identify tumour kinetic features and serve as a valuable clinical marker to enhance the prediction of breast cancer subtypes. KEY POINTS:• Decomposition of image time-series signals has the potential to more accurately identify tumour kinetic features. • Fusion of intratumoural- and peritumoural-based predictive models improves the prediction of breast cancer subtypes.
UR - http://hdl.handle.net/10754/631064
UR - https://link.springer.com/article/10.1007%2Fs00330-018-5891-3
UR - http://www.scopus.com/inward/record.url?scp=85059690802&partnerID=8YFLogxK
U2 - 10.1007/s00330-018-5891-3
DO - 10.1007/s00330-018-5891-3
M3 - Article
C2 - 30617495
SN - 0938-7994
VL - 29
SP - 4456
EP - 4467
JO - European Radiology
JF - European Radiology
IS - 8
ER -