TY - JOUR
T1 - Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors.
AU - Nugraha, Mohamad I
AU - Yarali, Emre
AU - Firdaus, Yuliar
AU - Lin, Yuanbao
AU - El Labban, Abdulrahman
AU - Gedda, Murali
AU - Lidorikis, Elefterios
AU - Yengel, Emre
AU - Faber, Hendrik
AU - Anthopoulos, Thomas D.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR2018-CARF/CCF-3079. The authors would like to acknowledge N. Wehbe at KAUST Core Labs for supporting the XPS measurements.
PY - 2020/6/23
Y1 - 2020/6/23
N2 - Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
AB - Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
UR - http://hdl.handle.net/10754/664109
UR - https://pubs.acs.org/doi/10.1021/acsami.0c06306
U2 - 10.1021/acsami.0c06306
DO - 10.1021/acsami.0c06306
M3 - Article
C2 - 32564590
SN - 1944-8244
JO - ACS Applied Materials & Interfaces
JF - ACS Applied Materials & Interfaces
ER -