TY - JOUR
T1 - Real-time tumor ablation simulation based on the dynamic mode decomposition method
AU - Bourantas, George C.
AU - Ghommem, Mehdi
AU - Kagadis, George C.
AU - Katsanos, Konstantinos H.
AU - Loukopoulos, Vassilios C.
AU - Burganos, Vasilis N.
AU - Nikiforidis, George C.
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2014/4/21
Y1 - 2014/4/21
N2 - Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.
AB - Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.
UR - http://hdl.handle.net/10754/563534
UR - http://doi.wiley.com/10.1118/1.4870976
UR - http://www.scopus.com/inward/record.url?scp=84904911877&partnerID=8YFLogxK
U2 - 10.1118/1.4870976
DO - 10.1118/1.4870976
M3 - Article
C2 - 24784405
SN - 0094-2405
VL - 41
SP - 053301
JO - Medical Physics
JF - Medical Physics
IS - 5
ER -