TY - GEN
T1 - Recombination barrier layers in solid-state quantum dot-sensitized solar cells
AU - Roelofs, Katherine E.
AU - Brennan, Thomas P.
AU - Dominguez, Juan C.
AU - Bent, Stacey F.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We would like to thank the McGehee group at Stanford forthe use of materials and equipment. This work was supportedby the Center for Advanced Molecular Photovoltaics, made bythe King Abdullah University of Science and Technology(KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/6
Y1 - 2012/6
N2 - By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.
AB - By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.
UR - http://hdl.handle.net/10754/599463
UR - http://ieeexplore.ieee.org/document/6318223/
UR - http://www.scopus.com/inward/record.url?scp=84869385038&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2012.6318223
DO - 10.1109/PVSC.2012.6318223
M3 - Conference contribution
SN - 9781467300667
SP - 3040
EP - 3043
BT - 2012 38th IEEE Photovoltaic Specialists Conference
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -