TY - JOUR
T1 - Recombination junctions for efficient monolithic perovskite-based tandem solar cells: Physical principles, properties, processing and prospects
AU - de Bastiani, Michele
AU - Subbiah, Anand Selvin
AU - Aydin, Erkan
AU - Isikgor, Furkan Halis
AU - Allen, Thomas
AU - De Wolf, Stefaan
N1 - KAUST Repository Item: Exported on 2020-11-16
Acknowledged KAUST grant number(s): OSR-CRG URF/1/3383, OSR-CARF URF/1/3097
Acknowledgements: The authors acknowledge the support of the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. KAUST OSR-CARF URF/1/3097, and KAUST OSR-CRG URF/1/3383.
PY - 2020/9/11
Y1 - 2020/9/11
N2 - Crystalline silicon (c-Si) solar cells comprise more than 95% of the photovoltaics (PV) market. At wafer-scale, this technology is gradually reaching its practical power conversion efficiency (PCE) limit. Therefore, new performance-driven and scalable alternatives must be developed to further increase the cost-competitiveness of PV. Stacked PV absorbers with decreasing bandgaps in a tandem configuration utilize more efficiently the solar spectrum, and can thereby overcome the single-junction efficiency limit of conventional solar cells. Specifically, the monolithic, two-terminal tandem solar cell implementation promises a simple, yet high-performance technology with high market-relevance. Metal-halide perovskite absorbers have attracted broad interest in their application as the top cell of such a c-Si based tandem solar cell configuration. Practically, the perovskite and c-Si subcells need to be electronically coupled, where the interfacial structure should guarantee efficient charge recombination of majority carriers (collected from each subcell), without inducing minority-carrier recombination. In this article, we review the mechanism underlying efficient recombination junctions, and discuss available materials systems for perovskite-based tandems, as well as additional requirements such as efficient light coupling into the subcells, processing compatibility, scalability of materials and methods, and stability. We extend our discussion beyond c-Si to thin-film bottom cell technologies such as low-bandgap perovskites and chalcogenides. We conclude with an outlook on considerations for industrialization of such interfacial structures. This journal is
AB - Crystalline silicon (c-Si) solar cells comprise more than 95% of the photovoltaics (PV) market. At wafer-scale, this technology is gradually reaching its practical power conversion efficiency (PCE) limit. Therefore, new performance-driven and scalable alternatives must be developed to further increase the cost-competitiveness of PV. Stacked PV absorbers with decreasing bandgaps in a tandem configuration utilize more efficiently the solar spectrum, and can thereby overcome the single-junction efficiency limit of conventional solar cells. Specifically, the monolithic, two-terminal tandem solar cell implementation promises a simple, yet high-performance technology with high market-relevance. Metal-halide perovskite absorbers have attracted broad interest in their application as the top cell of such a c-Si based tandem solar cell configuration. Practically, the perovskite and c-Si subcells need to be electronically coupled, where the interfacial structure should guarantee efficient charge recombination of majority carriers (collected from each subcell), without inducing minority-carrier recombination. In this article, we review the mechanism underlying efficient recombination junctions, and discuss available materials systems for perovskite-based tandems, as well as additional requirements such as efficient light coupling into the subcells, processing compatibility, scalability of materials and methods, and stability. We extend our discussion beyond c-Si to thin-film bottom cell technologies such as low-bandgap perovskites and chalcogenides. We conclude with an outlook on considerations for industrialization of such interfacial structures. This journal is
UR - http://hdl.handle.net/10754/665936
UR - http://xlink.rsc.org/?DOI=D0MH00990C
UR - http://www.scopus.com/inward/record.url?scp=85095752443&partnerID=8YFLogxK
U2 - 10.1039/d0mh00990c
DO - 10.1039/d0mh00990c
M3 - Article
SN - 2051-6355
VL - 7
SP - 2791
EP - 2809
JO - Materials Horizons
JF - Materials Horizons
IS - 11
ER -