Red/NIR/SWIR multi-band persistent probe chargeable by general lighting sources for long-term, high-contrast visible/NIR-I/NIR-II multi-window bioimaging

Yafei Chen, Simona Spinelli, Zhanjun Gu, Zhengwei Pan

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Persistent luminescence-based bioimaging affords high-contrast, deep-tissue imaging, but suffers from short imaging duration (a few minutes to a few hours), gradually diminishing emission intensity and imaging quality during imaging, being non-rechargeable in vivo, and single emission band (visible, near-infrared (NIR, 700–950 nm), or short-wave infrared (SWIR, 950–1700 nm)). Here, we report a CaTiO3:Pr3+ multi-band persistent probe that is chargeable by extremely-weak visible light such as moonlight, and simultaneously emit red (610 nm), NIR (893 nm) and SWIR (1040 nm) persistent luminescence. This red/NIR/SWIR multi-band persistent probe allows the first-ever bioimaging in all three bioimaging windows (visible, NIR-I (700–950 nm) and NIR-II (1000–1350 nm)) using one probe under same imaging condition. The probe is chargeable by tissue-friendly, low-intensity general lighting sources (e.g., a household white LED bulb) through deep organs (e.g., stomach, liver, lungs) of live mice at any time points during imaging, affording consistent emission intensity and imaging quality over an unlimited imaging time. These unique bioimaging features, along with other important findings regarding tissue attenuation of red, NIR and SWIR light, imaging factors-dependent signal-to-background ratios and persistent luminescence-based NIR-II bioimaging, are expected to impact not only persistent luminescence-based bioimaging but also optical bioimaging in general.
Original languageEnglish (US)
Pages (from-to)137473
JournalChemical Engineering Journal
Volume446
DOIs
StatePublished - Jun 14 2022

ASJC Scopus subject areas

  • Environmental Chemistry
  • General Chemical Engineering
  • General Chemistry
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Red/NIR/SWIR multi-band persistent probe chargeable by general lighting sources for long-term, high-contrast visible/NIR-I/NIR-II multi-window bioimaging'. Together they form a unique fingerprint.

Cite this