TY - JOUR
T1 - Redox Kinetics and Nonstoichiometry of Ce0.5Zr0.5O2−δ for Water Splitting and Hydrogen Production
AU - Zhao, Zhenlong
AU - Uddi, Mruthunjaya
AU - Tsvetkov, Nikolai
AU - Yildiz, Bilge
AU - Ghoniem, Ahmed F.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study is financially supported by a grant from the British Petroleum (BP) and the King Abdullah University of Science and Technology (KAUST) Investigator Award.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2017/5/11
Y1 - 2017/5/11
N2 - Water splitting and chemical fuel production as a promising carbon-neutral energy solution relies critically on an efficient electrochemical process over catalyst surfaces. The fundamentals within the surface redox pathways, including the complex interactions of mobile ions and electrons between the bulk and the surface, along with the role of adsorbates and electrostatic fields remain yet to be understood quantitatively. This work presents a detailed kinetics study and nonstoichiometry characterization of Ce0.5Zr0.5O2−δ (CZO), one of the most recognized catalysts for water splitting. The use of CZO leads to >60% improvement in the kinetic rates as compared with undoped ceria with twice the total yield at 700 °C, resulting from the improved reducibility. The peak H2 production rate is 95 μmol g–1 s–1 at 700 °C, and the total production is 750 μmol g–1. A threshold temperature of 650 °C is required to achieve significant H2 production at fast rates. The redox kinetics is modeled using two-step surface chemistry with bulk-to-surface transport equilibrium. Kinetics and equilibrium parameters are extracted, and the model predictions show good agreement with the measurements. The enthalpy of bulk defect formation for CZO is found to be 262 kJ/mol, >40% lower than that of undoped ceria. As oxygen vacancy is gradually filled up, the surface H2O splitting chemistry undergoes a transition from exothermic to endothermic, with the crossover around δ = 0.04 to 0.05, which constrains the further ion incorporation process. Our kinetics study reveals that the H2O splitting process with CZO is kinetics limited at low temperature and transitions to partial-equilibrium with significantly enhanced backward reaction at high temperature. The charge-transfer step is found to be the rate-limiting step for H2O splitting. The detailed kinetics and nonstoichiometric equilibria should be helpful in guiding the design and optimization of CZO as a catalyst, oxygen storage material, as well as oxygen carrier for water-splitting applications.
AB - Water splitting and chemical fuel production as a promising carbon-neutral energy solution relies critically on an efficient electrochemical process over catalyst surfaces. The fundamentals within the surface redox pathways, including the complex interactions of mobile ions and electrons between the bulk and the surface, along with the role of adsorbates and electrostatic fields remain yet to be understood quantitatively. This work presents a detailed kinetics study and nonstoichiometry characterization of Ce0.5Zr0.5O2−δ (CZO), one of the most recognized catalysts for water splitting. The use of CZO leads to >60% improvement in the kinetic rates as compared with undoped ceria with twice the total yield at 700 °C, resulting from the improved reducibility. The peak H2 production rate is 95 μmol g–1 s–1 at 700 °C, and the total production is 750 μmol g–1. A threshold temperature of 650 °C is required to achieve significant H2 production at fast rates. The redox kinetics is modeled using two-step surface chemistry with bulk-to-surface transport equilibrium. Kinetics and equilibrium parameters are extracted, and the model predictions show good agreement with the measurements. The enthalpy of bulk defect formation for CZO is found to be 262 kJ/mol, >40% lower than that of undoped ceria. As oxygen vacancy is gradually filled up, the surface H2O splitting chemistry undergoes a transition from exothermic to endothermic, with the crossover around δ = 0.04 to 0.05, which constrains the further ion incorporation process. Our kinetics study reveals that the H2O splitting process with CZO is kinetics limited at low temperature and transitions to partial-equilibrium with significantly enhanced backward reaction at high temperature. The charge-transfer step is found to be the rate-limiting step for H2O splitting. The detailed kinetics and nonstoichiometric equilibria should be helpful in guiding the design and optimization of CZO as a catalyst, oxygen storage material, as well as oxygen carrier for water-splitting applications.
UR - http://hdl.handle.net/10754/626725
UR - https://pubs.acs.org/doi/10.1021/acs.jpcc.7b00644
UR - http://www.scopus.com/inward/record.url?scp=85020933825&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.7b00644
DO - 10.1021/acs.jpcc.7b00644
M3 - Article
SN - 1932-7447
VL - 121
SP - 11055
EP - 11068
JO - The Journal of Physical Chemistry C
JF - The Journal of Physical Chemistry C
IS - 21
ER -