TY - GEN
T1 - ReferIt3D
T2 - 16th European Conference on Computer Vision, ECCV 2020
AU - Achlioptas, Panos
AU - Abdelreheem, Ahmed
AU - Xia, Fei
AU - Elhoseiny, Mohamed
AU - Guibas, Leonidas
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - In this work we study the problem of using referential language to identify common objects in real-world 3D scenes. We focus on a challenging setup where the referred object belongs to a fine-grained object class and the underlying scene contains multiple object instances of that class. Due to the scarcity and unsuitability of existent 3D-oriented linguistic resources for this task, we first develop two large-scale and complementary visio-linguistic datasets: i) Sr3D, which contains 83.5 K template-based utterances leveraging spatial relations among fine-grained object classes to localize a referred object in a scene, and ii) Nr3D which contains 41.5K natural, free-form, utterances collected by deploying a 2-player object reference game in 3D scenes. Using utterances of either datasets, human listeners can recognize the referred object with high (>86%, 92% resp.) accuracy. By tapping on this data, we develop novel neural listeners that can comprehend object-centric natural language and identify the referred object directly in a 3D scene. Our key technical contribution is designing an approach for combining linguistic and geometric information (in the form of 3D point clouds) and creating multi-modal (3D) neural listeners. We also show that architectures which promote object-to-object communication via graph neural networks outperform less context-aware alternatives, and that fine-grained object classification is a bottleneck for language-assisted 3D object identification.
AB - In this work we study the problem of using referential language to identify common objects in real-world 3D scenes. We focus on a challenging setup where the referred object belongs to a fine-grained object class and the underlying scene contains multiple object instances of that class. Due to the scarcity and unsuitability of existent 3D-oriented linguistic resources for this task, we first develop two large-scale and complementary visio-linguistic datasets: i) Sr3D, which contains 83.5 K template-based utterances leveraging spatial relations among fine-grained object classes to localize a referred object in a scene, and ii) Nr3D which contains 41.5K natural, free-form, utterances collected by deploying a 2-player object reference game in 3D scenes. Using utterances of either datasets, human listeners can recognize the referred object with high (>86%, 92% resp.) accuracy. By tapping on this data, we develop novel neural listeners that can comprehend object-centric natural language and identify the referred object directly in a 3D scene. Our key technical contribution is designing an approach for combining linguistic and geometric information (in the form of 3D point clouds) and creating multi-modal (3D) neural listeners. We also show that architectures which promote object-to-object communication via graph neural networks outperform less context-aware alternatives, and that fine-grained object classification is a bottleneck for language-assisted 3D object identification.
UR - http://www.scopus.com/inward/record.url?scp=85097249667&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-58452-8_25
DO - 10.1007/978-3-030-58452-8_25
M3 - Conference contribution
AN - SCOPUS:85097249667
SN - 9783030584511
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 422
EP - 440
BT - Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
A2 - Vedaldi, Andrea
A2 - Bischof, Horst
A2 - Brox, Thomas
A2 - Frahm, Jan-Michael
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 23 August 2020 through 28 August 2020
ER -